Products for USB Sensing and Control Canada flag
Products for USB Sensing and Control

sales inquiries

quotes, distributor information, purchase orders
sales@phidgets.com

technical inquiries

support, advice, warranty, returns, misshipment
support@phidgets.com

website inquiries

corrections or suggestions
web@phidgets.com

Address

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada

PHIDGETS Inc.

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada
+1 403 282-7335

PhidgetMotorControl 1-Motor

ID: 1065_1B NRND

This product supports our Phidget21 libraries. Use as a drop-in replacement for legacy systems.

$75.00

Quantity Available: 919

Qty Price
5 $71.25
10 $67.50
25 $60.00
50 $52.50
100 $48.75
250 $45.00
500 $41.25
1000 $37.50
50+...

For new systems and projects, we recommend using the following VINT products instead of this one.

The 1065 lets you control the direction, velocity and acceleration of one DC Motor. The motor is powered by an external power supply (9 to 28VDC).

Brushed DC Motors are very simple to understand, but very difficult to control precisely. By applying a voltage, or pulsing a voltage rapidly, current flows through the motor and it will begin rotating. Depending on the direction of the current, the motor will rotate clockwise or counterclockwise. By switching the voltage very quickly (a technique called PWM), the 1065 changes the effective voltage by changing the percentage of time the full supply voltage is applied to the motor.

Precise control of DC motors can be achieved by using encoders. You can implement control loops in software by using the data provided by the on-board digital inputs, analog inputs and encoder input.

Features

  • Provides bi-directional control of one DC motor
  • Over-voltage, over-temperature and over-current warnings reported through the API
  • Encoder input allows you to read an encoder attached to your motor for position control
  • Digital and voltage inputs for reading limit switches and feedback potentiometers
  • Mounting hardware included

Enclosure

We do not carry enclosures for the 1065, because motor controllers are prone to overheating when kept in enclosed spaces for extended periods of time with no airflow.

DC Motors

We offer a wide variety of DC motors that can be used with this Phidget. Motors with higher gearbox ratios will have higher torque at the cost of lower speed. If you want a motor that has an encoder attached to it, skip ahead to the next table.

Product Motor Properties Physical Properties Gearbox Specifications
Part Number Price Rated Speed Rated Torque Shaft Diameter Weight Gear Ratio Gearbox Type
3261_0
12V/0.2Kg-cm/1080RPM 3.7:1 DC Gear Motor
$18.00 1080 RPM 240 g·cm 6 mm 144 g 3 1217 : 1 Planetary
3254_0
12V/0.2Kg-cm/230RPM 10:1 DC Gear Motor
$10.00 230 RPM 200 g·cm 6 mm 128 g 10 : 1 Spur
3262_1
12V/0.9Kg-cm/285RPM 14:1 DC Gear Motor
$18.00 285 RPM 900 g·cm 6 mm 170 g 13 212289 : 1 Planetary
3255_0
12V/0.3Kg-cm/127RPM 18:1 DC Gear Motor
$10.00 127 RPM 310 g·cm 6 mm 133 g 18 : 1 Spur
3256_0
12V/0.8Kg-cm/46RPM 50:1 DC Gear Motor
$11.00 46 RPM 820 g·cm 6 mm 137 g 50 : 1 Spur
3263_1
12V/3.0Kg-cm/78RPM 51:1 DC Gear Motor
$20.50 78 RPM 3.1 kg·cm 6 mm 193 g 50 801895 : 1 Planetary
3257_0
12V/1.6Kg-cm/23RPM 100:1 DC Gear Motor
$11.00 23 RPM 1.6 kg·cm 6 mm 136 g 100 : 1 Spur
3265_0
12V/0.5Kg-cm/670RPM 3.7:1 DC Gear Motor
$38.00 670 RPM 540 g·cm 8 mm 416 g 3 1217 : 1 Planetary
3266_1
12V/1.9Kg-cm/175RPM 14:1 DC Gear Motor
$42.00 175 RPM 1.9 kg·cm 8 mm 464 g 13 212289 : 1 Planetary
3267_1
12V/6.6Kg-cm/49RPM 51:1 DC Gear Motor
$43.00 49 RPM 6.6 kg·cm 8 mm 526 g 50 801895 : 1 Planetary
3267_0
12V/6.6Kg-cm/49RPM 51:1 DC Gear Motor
$33.00 49 RPM 6.6 kg·cm 8 mm 526 g 50 801895 : 1 Planetary
3268_1
12V/17.3Kg-cm/18RPM 139:1 DC Gear Motor
$43.00 18 RPM 17.3 kg·cm 8 mm 526 g * 139 1841221 : 1 Planetary
DCM4000_0
24V/2.5Kg-cm/3280RPM DC Motor
$40.00 3280 RPM 4 kg·cm 8 mm 1.4 kg
DCM4004_0
24V/4.3Kg-cm/3000RPM DC Motor
$50.00 2800 RPM 8.7 kg·cm 10 mm 2.7 kg
DCM4005_0
24V/6Kg-cm/3200RPM DC Motor
$60.00 2900 RPM 11.4 kg·cm 10 mm 3.3 kg
3269_3
24V/5.1Kg-cm/588RPM 4.25:1 DC Gear Motor
$69.00 588 RPM 4.4 kg·cm 12 mm 1.3 kg 4 14 : 1 Planetary
DCM4001_0
24V/10Kg-cm/772RPM/4.25:1 DC Gear Motor
$80.00 772 RPM 12.2 kg·cm 12 mm 1.9 kg 4 14 : 1 Planetary
3270_2
24V/14.2Kg-cm/192RPM 13:1 DC Gear Motor
$66.00 192 RPM 13.3 kg·cm 12 mm 1.5 kg 12 2425 : 1 Planetary
DCM4002_0
24V/45Kg-cm/182RPM/18:1 DC Gear Motor
$82.00 182 RPM 47 kg·cm 12 mm 2.1 kg 18 : 1 Planetary
3272_2
24V/50.9Kg-cm/53RPM 47:1 DC Gear Motor
$72.00 53 RPM 43.8 kg·cm 12 mm 1.7 kg 46 82125 : 1 Planetary
DCM4003_0
24V/162Kg-cm/50RPM/65:1 DC Gear Motor
$84.00 50 RPM 153 kg·cm 12 mm 2.2 kg 65 : 1 Planetary
3273_2
24V/82.6Kg-cm/33RPM 76:1 DC Gear Motor
$72.00 33 RPM 71.4 kg·cm 12 mm 1.7 kg 76 4964 : 1 Planetary
3274_2
24V/173.3Kg-cm/15RPM 168:1 DC Gear Motor
$76.00 15 RPM 136.6 kg·cm 12 mm 2 kg 167 601625 : 1 Planetary

DC Motors with Encoders

These DC motors all have encoders attached to the rear shaft, allowing for closed-loop position control of your motor. These encoders will connect to the encoder input on the 1065 via the cable included with each motor.

Product Motor Properties Physical Properties Gearbox Specifications
Part Number Price Rated Speed Rated Torque Shaft Diameter Weight Gear Ratio Gearbox Type
3261E_1
12V/0.2Kg-cm/1080RPM 3.7:1 DC Gear Motor w/ Encoder
$48.00 1080 RPM 240 g·cm 6 mm 147 g 3 1217 : 1 Planetary

DC Linear Actuators

Linear actuators are simply DC motors that are hooked up to a linear screw which causes the shaft to move laterally instead of rotating. Unlike a rotary DC motor, linear actuators have a minimum and maximum position at which the shaft cannot contract or extend any further. On its own, the motor would not be smart enough to stop before attempting to push beyond these limits, possibly damaging the motor. That's why each linear actuator also has a built-in feedback potentiometer so you can monitor the position of the shaft and prevent the actuator from stalling out at its limits. The potentiometer can be read by the analog input on the 1065.

Product Motor Properties Electrical Properties Physical Properties
Part Number Price Stroke Length Maximum Speed Peak Power Point Peak Efficiency Point Gear Ratio Rated Voltage Weight
DCL4016_0
DC Linear Actuator - 30mm - 18N
$40.00 30 mm 50 mm/s 18 N 12 V DC 63.6 g
DCL4014_0
DC Linear Actuator - 30mm - 60N
$40.00 30 mm 15 mm/s 60 N 12 V DC 69.9 g
3570_0
DC Linear Actuator - 50mm - 50N
$80.00 50 mm 32 mm/s (@ 16 mm/s) 50 N (@ 24 mm/s) 24 N 35 : 1 12 V DC 56 g
3573_0
DC Linear Actuator - 50mm - 75N
$80.00 50 mm 20 mm/s (@ 10 mm/s) 75 N (@ 15 mm/s) 38 N 63 : 1 12 V DC 56 g
3576_0
DC Linear Actuator - 50mm - 175N
$80.00 50 mm 8 mm/s (@ 4 mm/s) 175 N (@ 7 mm/s) 75 N 150 : 1 12 V DC 56 g
DCL4015_0
DC Linear Actuator - 100mm - 18N
$40.00 100 mm 50 mm/s 18 N 12 V DC 94.3 g
3571_0
DC Linear Actuator - 100mm - 50N
$80.00 100 mm 32 mm/s (@ 16 mm/s) 50 N (@ 24 mm/s) 24 N 35 : 1 12 V DC 74 g
DCL4013_0
DC Linear Actuator - 100mm - 60N
$40.00 100 mm 15 mm/s 60 N 12 V DC 93.9 g
3574_0
DC Linear Actuator - 100mm - 75N
$80.00 100 mm 20 mm/s (@ 10 mm/s) 75 N (@ 15 mm/s) 38 N 63 : 1 12 V DC 74 g
3577_0
DC Linear Actuator - 100mm - 175N
$80.00 100 mm 8 mm/s (@ 4 mm/s) 175 N (@ 7 mm/s) 75 N 150 : 1 12 V DC 74 g
3572_0
DC Linear Actuator - 140mm - 50N
$80.00 140 mm 32 mm/s (@ 16 mm/s) 50 N (@ 24 mm/s) 24 N 35 : 1 12 V DC 84 g
3575_0
DC Linear Actuator - 140mm - 75N
$80.00 140 mm 20 mm/s (@ 10 mm/s) 75 N (@ 15 mm/s) 38 N 63 : 1 12 V DC 84 g
3578_0
DC Linear Actuator - 140mm - 175N
$80.00 140 mm 8 mm/s (@ 4 mm/s) 175 N (@ 7 mm/s) 75 N 150 : 1 12 V DC 84 g

Power Supplies

This Phidget requires a power supply between 9 and 28V DC. We recommend that you use a 12V DC power supply for smaller motors and a 24V supply for larger motors. Check your motor's specifications if you're not sure. For best performance, you should get a 5 amp supply. Select the power supply from the list below that matches your region's wall socket type.

Product Electrical Properties Physical Properties
Part Number Price Power Supply Current Output Voltage Wall Plug Style
PSU4016_0
Power Supply 24VDC 14.6A
$40.00 14.6 A 24 V
PSU4019_0
Power Supply 24VDC 25A Current Limiting
$120.00 25 A 24 V
PSU4015_0
Power Supply DIN Mount 24VDC 1A
$20.00 1 A 24 V
3084_0
Power Supply 12VDC 0.5A - EU
$1.50 500 mA 12 V European
3085_0
Power Supply 12VDC 0.5A - US
$1.50 500 mA 12 V North American
3022_0
Power Supply 12VDC 2.0A - AU
$10.00 2 A 12 V Australian
3023_1
Power Supply 12VDC 2.0A - EU
$10.00 2 A 12 V European
3025_0
Power Supply 12VDC 2.0A - UK
$10.00 2 A 12 V British
PSU4018_0
Power Supply 12VDC 5A
$20.00 5 A 12 V
3086_0
Power Supply 24VDC 1.0A - US
$10.00 1 A 24 V North American
PSU4013_0
Power Supply 24VDC 2.5A
$20.00 2.5 A 24 V
PSU4014_0
Power Supply 24VDC 5A
$40.00 5 A 24 V
3024_1
Power Supply-12VDC 2.0A - US
$10.00 2 A 12 V North American

USB Cables

Use a USB cable to connect this Phidget to your computer. We have a number of different lengths available, although the maximum length of a USB cable is 5 meters due to limitations in the timing protocol. For longer distances, we recommend that you use a Single Board Computer to control the Phidget remotely.

Product Physical Properties
Part Number Price Connector A Connector B Cable Length
3017_1
USB-A to Mini-B Cable 28cm 24AWG
$3.00 USB Type A USB Mini-B 280 mm
CBL4011_0
USB-A to Mini-B Cable 28cm Right Angle
$3.50 USB Type A USB Mini-B (90 degree) 280 mm
3036_0
USB-A to Mini-B Cable 60cm 24AWG
$3.50 USB Type A USB Mini-B 600 mm
CBL4020_0
USB-C to Mini-B Cable 60cm 28AWG
$5.00 USB Type C USB Mini-B 600 mm
CBL4012_0
USB-A to Mini-B Cable 83cm Right Angle
$4.50 USB Type A USB Mini-B (90 degree) 830 mm
3037_0
USB-A to Mini-B Cable 120cm 24AWG
$4.00 USB Type A USB Mini-B 1.2 m
3018_0
USB-A to Mini-B Cable 180cm 24AWG
$4.00 USB Type A USB Mini-B 1.8 m
CBL4021_0
USB-C to Mini-B Cable 180cm 28AWG
$6.00 USB Type C USB Mini-B 1.8 m
3020_0
USB-A to Mini-B Cable 450cm 20AWG
$12.00 USB Type A USB Mini-B 4.5 m


Getting Started

Welcome to the 1065 user guide! In order to get started, make sure you have the following hardware on hand:


Next, you will need to connect the pieces:

1065 0 Connecting The Hardware.jpg
  1. Connect the positive wire (usually red) of the motor to the "+" terminal on the side of the Phidget opposite the USB port. Connect the negative wire (usually black) to the "-" terminal next to the red wire.
  2. Connect your device to your computer using the USB cable.
  3. Plug the DC power supply into the barrel jack, or if it doesn't have a jack, connect the loose leads to the "+" and "G" terminals between the barrel jack and USB port.
  4. Ensure that the DC power supply is plugged in.


Now that you have everything together, let's start using the 1065!

Using the 1065

Phidget Control Panel

In order to demonstrate the functionality of the 1065, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines.

Windows

To open the Phidget Control Panel on Windows, find the Ph.jpg icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel

Windows PhidgetTaskbar.PNG

macOS

To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the Ph.jpg icon to bring up the Phidget Control Panel.


For more information, take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1065.

First Look

After plugging the 1065 into your computer and opening the Phidget Control Panel, you will see something like this:

1065 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

DC Motor

Double-click on the DC Motor object, labelled DC Motor Controller, in order to run the example:

1065 DCMotor Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Toggle the BackEMF Sensing checkbox to enable/disable back-EMF sensing on the 1065.
  • Drag the Target Velocity slider from -1 (full reverse) to 1 (full forward) to make the motor move.
  • Manipulate the Acceleration slider to increase/decrease the amount of time it takes the DC Motor to reach a target velocity.


Encoder

Double-click on the Encoder object, labelled Encoder Input, in order to run the example:

1065 Encoder Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Position Change: the number of ticks (or quadrature cycles) that have occurred since the last change event.
  • Time Change: the amount of time in milliseconds that has elapsed since the last change event.
  • Position: the total position in ticks relative to where the encoder was when the window was opened.
  • Index Position: the position where the index channel was last encountered. Some encoders do not support index, check your encoder's datasheet for more information.
  • Velocity: the average velocity in rotations per second. A CPR must be specified to enable this functionality.
  • Specify a counts per revolution (CPR) value to enable velocity calculation.

Current Input

Double-click on the Current Input object , labelled DC Motor Current Sensor, in order to run the example:

1065 CurrentInput Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.

Digital Input

Double-click on a Digital Input object in order to run the example:

1065 DigitalInput Example.jpg

General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • This is an active-low device, therefore, it will be true when connected to ground, and false when connected to a high voltage.

For more information about Digital Inputs, take a look at the Digital Input Primer

Voltage Input (Supply Voltage)

Double-click on the Voltage Input object, lablled Supply Voltage Sensor, in order to run the example:

1065 VoltageInputSupply Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.

Voltage Input

Double-click on a Voltage Input object in order to run the example:

1065 VoltageInputSensor Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


For more information about Voltage Inputs, check out the Voltage Input Primer.

Voltage Ratio Input

Double-click on a Voltage Ratio Input object in order to run the example:

1065 VoltageRatioSensor Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • The voltage ratio is reported in Volts per Volt. For example, if the Phidget is providing 5V and the sensor is sending back 2.5V, the ratio will be 0.5V/V.
  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


For more information about Voltage Ratio Inputs, check out the Voltage Ratio Input Primer.

Finding The Addressing Information

Before you can access the device in your own code, and from our examples, you'll need to take note of the addressing parameters for your Phidget. These will indicate how the Phidget is physically connected to your application. For simplicity, these parameters can be found by clicking the button at the top of the Control Panel example for that Phidget.

The locate Phidget button is found in the device information box

In the Addressing Information window, the section above the line displays information you will need to connect to your Phidget from any application. In particular, note the Channel Class field as this will be the API you will need to use with your Phidget, and the type of example you should use to get started with it. The section below the line provides information about the network the Phidget is connected on if it is attached remotely. Keep track of these parameters moving forward, as you will need them once you start running our examples or your own code.

All the information you need to address your Phidget

Using Your Own Program

You are now ready to start writing your own code for the device. The best way to do that is to start from our Code Samples.

Select your programming language of choice from the drop-down list to get an example for your device. You can use the options provided to further customize the example to best suit your needs.

Code Sample Choose Language.png


Once you have your example, you will need to follow the instructions on the page for your programming language to get it running. To find these instructions, select your programming language from the Programming Languages page.

Technical Details

Connections

The ports and terminal blocks on this board are labelled on the underside to save space:

1065 0 Under.jpg

Further Reading

For more information on the analog inputs on the 1065, check the Analog Input Guide.

For more information about encoders, check the Encoder Guide.

For more information about DC motors and how to control them, check the DC Motor and Controller Guide.

What to do Next

  • Programming Languages - Find your preferred programming language here and learn how to write your own code with Phidgets!
  • Phidget Programming Basics - Once you have set up Phidgets to work with your programming environment, we recommend you read our page on to learn the fundamentals of programming with Phidgets.


Product Specifications

Controller Properties
API Object Name MotorControl
Motor Type DC Motor
Number of Motor Ports 1
Velocity Resolution 0.39 Duty Cycle
Acceleration Resolution 24.5 Duty Cycle/s
Acceleration Min 24.5 Duty Cycle/s
Acceleration Max 6250 Duty Cycle/s
Acceleration Time Min 31.3 ms
Acceleration Time Max 8.2 s
Board Properties
Controlled By USB (Mini-USB)
API Object Name DCMotor
Encoder Interface
Number of Encoder Inputs 1
Count Rate Max 500000 cycles/s
Encoder Interface Resolution x1
Update Rate 125 samples/s
Time Resolution 0.33 ms
Encoder Input Low Voltage Max 800 mV DC
Encoder Input High Voltage Min 2.1 V DC
Encoder Pull-up Resistance 2.4 kΩ
Electrical Properties
Supply Voltage Min 9 V DC
Supply Voltage Max 28 V DC
Continuous Motor Current Max 5 A
Overcurrent Trigger 8 A
Current Consumption Min 20 mA
Current Consumption Max 100 mA
USB Speed Full Speed
Physical Properties
Recommended Wire Size (Power Terminal) 12 - 24 AWG
Operating Temperature Min 0 °C
Operating Temperature Max 70 °C
Voltage Inputs
Number of Voltage Inputs 2
Input Impedance 900 kΩ
5V Reference Error Max 0.5 %
Update Rate 125 samples/s
Digital Inputs
Number of Digital Inputs 2
Pull-up Resistance 15 kΩ
Low Voltage Max (True) 800 mV DC
High Voltage Min (False) 2.1 V DC
Low Voltage Trigger Length Min 4 s
High Voltage Trigger Length Min 16 s
Digital Input Voltage Max ± 15 V DC
Digital Input Update Rate 125 samples/s
Recommended Wire Size 16 - 26 AWG
Customs Information
Canadian HS Export Code 8471.80.00
American HTS Import Code 8471.80.40.00
Country of Origin CN (China)

Product History

Date Board Revision Device Version Packaging Revision Comment
June 2011 0100 Product Release
June 2011 0101 getLabelString fixed for labels longer than 7 characters
October 2017 0101 BRemoved USB cable from packaging
September 20181101 BAdded heatsink

Documents

Code Samples



Example Options


Downloads

				Make your selections to display sample code.
					

Code Samples

Language:

APIDetailLanguageOS
DCMotor Visual Studio GUI C# Windows Download
DCMotor JavaScript Browser Download
DCMotor Objective-C macOS Download
DCMotor Swift macOS Download
DCMotor Swift iOS Download
DCMotor Visual Basic .NET Windows Download
DCMotor Max/MSP Multiple Download
DigitalInput Visual Studio GUI C# Windows Download
DigitalInput JavaScript Browser Download
DigitalInput Multi-Channel Example JavaScript Browser Download
DigitalInput Objective-C macOS Download
DigitalInput Swift macOS Download
DigitalInput Swift iOS Download
DigitalInput Visual Basic .NET Windows Download
DigitalInput Max/MSP Multiple Download
Encoder Visual Studio GUI C# Windows Download
Encoder JavaScript Browser Download
Encoder Objective-C macOS Download
Encoder Swift macOS Download
Encoder Swift iOS Download
Encoder Visual Basic .NET Windows Download
Encoder Max/MSP Multiple Download
VoltageInput Visual Studio GUI C# Windows Download
VoltageInput Multi-Channel Example JavaScript Browser Download
VoltageInput JavaScript Browser Download
VoltageInput Objective-C macOS Download
VoltageInput Swift macOS Download
VoltageInput Swift iOS Download
VoltageInput Visual Basic .NET Windows Download
VoltageInput Max/MSP Multiple Download
VoltageRatioInput Visual Studio GUI C# Windows Download
VoltageRatioInput Load Cell Calibrator C# Windows Download
VoltageRatioInput JavaScript Browser Download
VoltageRatioInput Objective-C macOS Download
VoltageRatioInput Swift macOS Download
VoltageRatioInput Swift iOS Download
VoltageRatioInput Visual Basic .NET Windows Download
VoltageRatioInput Max/MSP Multiple Download
CurrentInput Visual Studio GUI C# Windows Download
CurrentInput JavaScript Browser Download
CurrentInput Objective-C macOS Download
CurrentInput Swift macOS Download
CurrentInput Swift iOS Download
CurrentInput Visual Basic .NET Windows Download
CurrentInput Max/MSP Multiple Download

Software Objects

Channel NameAPIChannel
DC Motor Controller DCMotor 0
Digital Input DigitalInput 0 - 1
Encoder Input Encoder 0
Voltage Input VoltageInput 0 - 1
Supply Voltage Sensor VoltageInput 2
Voltage Ratio Input VoltageRatioInput 0 - 1
DC Motor Current Sensor CurrentInput 0

API


Back Forward
Print this API

Have a look at our DC motor controllers:

Product Controller Properties Electrical Properties Board Properties
Part Number Price Number of Motor Ports Velocity Resolution Acceleration Resolution Continuous Motor Current Max Controlled By
DCC1003_0
2x DC Motor Phidget
$60.00 2 0.001 Duty Cycle 0.1 Duty Cycle/s (per motor) 4 A VINT
DCC1002_0
4A DC Motor Phidget
$40.00 1 0.001 Duty Cycle 0.1 Duty Cycle/s 4 A VINT
DCC1000_0
DC Motor Phidget
$75.00 1 0.001 Duty Cycle 1 Duty Cycle/s 25 A VINT
1065_1B
PhidgetMotorControl 1-Motor
$75.00 1 0.39 Duty Cycle 24.5 Duty Cycle/s 5 A USB (Mini-USB)
1064_1B
PhidgetMotorControl HC
$115.00 2 0.79 Duty Cycle 1.9 Duty Cycle/s (per motor) 14 A USB (Mini-USB)