Products for USB Sensing and Control
Products for USB Sensing and Control

PHIDGETS Inc.

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada
+1 403 282-7335

Quadrature Encoder Phidget

ID: ENC1000_0
Recommended for new designs: This product (or a similar replacement with a compatible form, fit and function) is estimated to be available for ten years or more.

Interface a quadrature encoder at speeds of up to 100,000 quadrature cycles per second to a port on your VINT Hub.

$15.00

Quantity Available: 913

Qty Price
5 $14.25
10 $13.50
25 $12.00
50 $10.50
100 $9.75
250 $9.00
500 $8.25
1000 $7.50

The Quadrature Encoder Phidget interfaces with any 5V quadrature encoder. A quadrature encoder is the most commonly used feedback device for a DC or stepper motor. With an encoder, you can keep track of how far your motor has turned, which then allows you to control the position and velocity in your code. This Phidget connects to your computer through a VINT Hub.

Features:

  • Works with all 0-5V quadrature encoders - read incremental encoders with line driver, open collector, or push-pull output circuits
  • Read at speeds of up to 100,000 quadrature cycles per second
  • Power Saving Options - Turn off your encoder using your program when the device is not turning. When the encoder is not being powered, this board draws 20μA of current.

VINT Hubs

This Phidget is a smart device that must be controlled by a VINT Hub. For more information about VINT, have a look at the VINT Primer. You can use a Phidget Cable to simply and easily connect the two devices. Here's a list of all of the different VINT Hubs currently available:

Product Board
Image Part Number Price Number of VINT Ports Controlled By
HUB0000_0 $30.00 6 USB (Mini-USB)
HUB5000_0 $60.00 6 Local Network (Ethernet or Wi-Fi)
SBC3003_0 $120.00 6

Phidget Cables

Use a Phidget cable to connect this device to the hub. You can solder multiple cables together in order to make even longer Phidget cables, but you should be aware of the effects of having long wires in your system.

Product Physical Properties
Image Part Number Price Cable Length
3002_0 $2.00 600 mm
3003_0 $1.50 100 mm
3004_0 $3.00 3.5 m
3034_0 $1.50 150 mm
3038_0 $2.25 1.2 m
3039_0 $2.75 1.8 m
CBL4104_0 $1.75 300 mm
CBL4105_0 $2.00 900 mm
CBL4106_0 $2.50 1.5 m

Encoder Cables

For an easy way to connect an encoder to the 5-pin connector on the ENC1000, you can use these handy cables.

Product Physical Properties
Image Part Number Price Cable Length Cable Gauge
3019_0 $5.00 500 mm 26 AWG

Rotary Encoders

The ENC1000 can be used with any incremental quadrature encoder. For more details on the different kinds of encoders, have a look at the Encoder Primer. All of the rotary encoders listed below are compatible with this Phidget:

Product Encoder Properties
Image Part Number Price Output Circuit Type Encoder Resolution Encoder Speed Max
3530_1 $50.00 Push-Pull (Single-Ended) 360 CPR 3000 RPM
3531_0 $25.00 Push-Pull (Single-Ended) 300 CPR 6000 RPM
3532_1 $50.00 Push-Pull (Single-Ended) 360 CPR 4500 RPM
ENC4109_0 $10.00 Push-Pull 40 CPR 6000 RPM

Linear Encoders

These linear encoders can all be used with the ENC1000:

Product Physical Properties
Image Part Number Price Travel
ENC4110_0 $90.00 300 mm
ENC4111_0 $95.00 500 mm
ENC4112_0 $100.00 700 mm
ENC4113_0 $110.00 900 mm
ENC4114_0 $120.00 1.1 m
ENC4115_0 $340.00 1.4 m
ENC4116_0 $360.00 1.7 m
ENC4117_0 $380.00 2 m

Draw Wire Encoders

Here are all of the draw-wire encoders that can be used with the ENC1000:

Product Encoder Properties Physical Properties
Image Part Number Price Output Circuit Type Length Resolution Wire Pull Length Weight
ENC4104_0 $145.00 Push-Pull 80 μm/cyc 1 m 305 g
ENC4106_0 $135.00 Push-Pull 100 μm/cyc 600 mm 255 g
ENC4107_0 $150.00 Push-Pull 100 μm/cyc 1.5 m 485 g
ENC4108_0 $165.00 Push-Pull 100 μm/cyc 2.5 m 580 g


Part 1: Setup

Welcome to the ENC1000 user guide! In order to get started, make sure you have the following hardware on hand:


Next, you will need to connect the pieces:

ENC1000 Functional.jpeg
  1. Connect the ENC1000 to the VINT Hub using the Phidget cable.
  2. Connect the encoder to the Phidget using an encoder cable.
  3. Connect the VINT Hub to your computer using a USB cable.


Now that you have everything together, let's start using the ENC1000!

Phidget Control Panel

In order to demonstrate the functionality of the ENC1000, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines.

Windows

To open the Phidget Control Panel on Windows, find the Ph.jpg icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel

Windows PhidgetTaskbar.PNG

macOS

To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the Ph.jpg icon to bring up the Phidget Control Panel.


For more information, take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the ENC1000.

First Look

After plugging the ENC1000 into your computer and opening the Phidget Control Panel, you will see something like this:

ENC1000 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Part 2: Using Your Phidget

About

Interface with any 5V quadrature encoder with the Quadrature Encoder Phidget. With an encoder, you can keep track of how far your motor has turned, which then allows you to control the position and velocity in your code.

Explore Your Phidget Channels Using The Control Panel

You can use your Control Panel to explore your Phidget's channels.

1. Open your Control Panel, and you will find the following channel:

ENC1000 Panel.jpg

2. Double click on the channel to open the example program. This channel belongs to the Encoder channel class:

Encoder: Reads the signal of a quadrature encoder

In your Control Panel, double click on "Quadrature Encoder Phidget":

ENC1000-Encoder.jpg

Part 3: Create your Program

1. Setting up your Programming Environment

2. Phidget Programming Basics

Part 4: Advanced Topics and Troubleshooting

How do I know what channel, serial number, or hub port to use in my program?

Before you open a Phidget channel in your program, you can set these properties to specify which channel to open. You can find this information through the Control Panel.

1. Open the Control Panel and double-click on the red map pin icon:

The locate Phidget button is found in the device information box

2. The Addressing Information window will open. Here you will find all the information you need to address your Phidget in your program.

All the information you need to address your Phidget


See the Phidget22 API for your language to determine exact syntax for each property.

Setting the Change Trigger and Data Interval

The Change Trigger is the minimum change in the sensor data needed to trigger a new data event. The Data Interval is the time (in ms) between data events sent out from your Phidget. You can modify one or both of these values to achieve different data outputs. You can learn more about these two properties here.

Setting IOMode

The ENC1000 can connect to any of the encoders we sell without any modification just by setting the IOMode property to Push-Pull . If you are trying to use your own encoder, you may need to change the IO mode to Open Collector or Line Driver mode. See the Encoder Primer for more details on what to use.

Connector

The encoder input on the ENC1000 uses a 5-pin, 0.100 inch pitch locking connector. The connectors are commonly available - refer to the Table below for manufacturer part numbers.

Manufacturer Part Number Description
Molex 50-57-9405 5 Position Cable Connector
Molex 16-02-0102 Wire Crimp Insert for Cable Connector
Molex 70543-0004 5 Position Vertical PCB Connector
Molex 70553-0004 5 Position Right-Angle PCB Connector (Gold)
Molex 70553-0039 5 Position Right-Angle PCB Connector (Tin)
Molex 15-91-2055 5 Position Right-Angle PCB Connector - Surface Mount

Note: Most of the above components can be bought at Digikey.

Calculating Velocity

When your program captures an encoder change event, it will receive two variables: positionChange (measured in 'ticks', four of which equal one quadrature count for the ENC1000) and timeChange (measured in milliseconds). You can use these values to easily compute the instantaneous velocity of the encoder. For example, our C# encoder example implements this method of velocity calculation:

void enc_change(object sender, Phidget22.Events.EncoderEncoderChangeEventArgs e) {

...

// Convert time change from milliseconds to minutes
double timeChangeMinutes = e.TimeChange / 60000.0;
// Calculate RPM based on the positionChange, timeChange, and encoder CPR (specified by the user)
double rpm = (((double)e.PositionChange / CPR) / timeChangeMinutes);

...

}

This implementation may be useful if you are graphing the RPM on a line graph, but if it's being used to display the current RPM as a single number, it won't be very helpful because when the motor changes speed or direction frequently, it'll be hard to read the velocity as a meaningful value. This method can also be prone to variations in velocity if the encoder's CPR is low and the sampling rate is high. To solve these problems, you should decide on a time interval during which you'll gather data, and take a moving velocity calculation based on that data. You can use the Queue data type to make this easy:

Queue<double> positionChangeQueue = new Queue<double>();
Queue<double> timeChangeQueue = new Queue<double>();

void enc_change(object sender, Phidget22.Events.EncoderEncoderChangeEventArgs e) {

double totalPosition = 0;
double totalTime = 0;
int n = 500; // sampling window size, duration is 500*t where t is the data interval of the ENC1000

// add the newest sample to the queue
positionChangeQueue.Enqueue(e.PositionChange);
timeChangeQueue.Enqueue(e.TimeChange);

// If we've exceeded our desired window size, remove the oldest element from the queue
if ( positionChangeQueue.Count >= n ) {
     positionChangeQueue.Dequeue();
     timeChangeQueue.Dequeue();
}

// Calculate totals for position and time
foreach( double positionChange in positionChangeQueue ) {

     totalPosition += positionChange;
}

foreach( double timeChange in timeChangeQueue ) {

     totalTime += timeChange;
}

// Convert time change from milliseconds to minutes
double timeChangeMinutes = e.TimeChange / 60000.0;
// Calculate RPM based on the positionChange, timeChange, and encoder CPR (specified by the user)
double rpm = (((double)e.PositionChange / CPR) / timeChangeMinutes);

}


Product Specifications

Board Properties
Controlled By VINT
Encoder Interface
Number of Encoder Inputs 1
Count Rate Max 400000 pulses/s
Encoder Interface Resolution x4
Time Resolution 1 μs
Encoder Input Low Voltage Max 2.4 V DC
Encoder Input High Voltage Min 2.6 V DC
Sampling Interval Min 20 ms/sample
Sampling Interval Max 1 s/sample
Pull-up Resistance (Open Collector) 2.2 kΩ or 10 kΩ
Pull-down Resistance (Line Driver) 2.2 kΩ or 10 kΩ
Electrical Properties
Current Consumption Min (unconfigured) 24.6 μA
Current Consumption Max encoder current + 4.2 mA
Physical Properties
Operating Temperature Min -40 °C
Operating Temperature Max 85 °C
Customs Information
Canadian HS Export Code 8471.80.00
American HTS Import Code 8471.80.40.00
Country of Origin CN (China)

Documents

Product History

Date Board Revision Device Version Comment
June 20170101Product Release

Software Objects

Channel NameAPIChannel
Encoder Input Encoder 0

API


Back Forward
Print this API

Code Samples



Example Options


Downloads

				Make your selections to display sample code.
					

Code Samples

Language:

APIDetailLanguageOS
Encoder Visual Studio GUI C# Windows Download
Encoder Java Android Download
Encoder JavaScript Browser Download
Encoder Objective-C macOS Download
Encoder Swift macOS Download
Encoder Swift iOS Download
Encoder Visual Basic .NET Windows Download
Encoder Max/MSP Multiple Download

Have a look at our encoder interfaces:

Product Encoder Interface
Image Part Number Price Number of Encoder Inputs Count Rate Max
1047_1B $75.00 4 1E+06 pulses/s
1057_2B $50.00 1 2E+06 pulses/s
ENC1000_0 $15.00 1 400000 pulses/s