Products for USB Sensing and Control

Products for USB Sensing and Control

PHIDGETS Inc.

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada
+1 403 282-7335

4x Relay Phidget

ID: REL1000_0

Switch the power of up to four circuits at 210W of DC power or 1750 VA of AC power with this mechanical relay module.

$30.00

Quantity Available: 475

Qty Price
5 $28.50
10 $27.00
25 $24.00
50 $21.00
100 $19.50
250 $18.00
500 $16.50
1000 $15.00

Functional

Controlling the power circuits of as many as four separate devices is a snap with this relay module. Each mechanical relay can control a seperate circuit of up to 210W of DC power or 1750 VA of AC power. This module requires an external power supply, which is isolated from the VINT port in order to improve stability by preventing ground loops. The relays by nature also isolate the load circuit from the control circuit, meaning you don't have to worry about voltage spikes in the load damaging your VINT Hub or computer.

Product Specifications

Board Properties
Controlled By VINT
Relay Properties
Number of Relays 4
Switch Type SPDT
Load Current Min 100 mA
Turn-off Time Max 5 ms
Turn-on Time Max 8 ms
Contact Resistance Max 50 mΩ
Dielectric Strength 1.5 kV AC
Electromagnet Coil Resistance 70 Ω
Switching Power Max (Real) 210 W
Switching Power Max (Apparent) 1.8 kVA
Electrical Properties
Load Voltage Max (DC) * 30 V DC
Load Current Max (DC) 7 A
Load Voltage Max (AC) 277 V AC
Load Current Max (AC) 12 A
Current Consumption Min (VINT Port) 500 μA
Power Consumption 40 mW
Supply Voltage Min 8 V DC
Supply Voltage Max 30 V DC
Physical Properties
Recommended Wire Size 12 - 24 AWG
Operating Temperature Min -40 °C
Operating Temperature Max 70 °C

*Note: Switching this relay at voltages higher than 30V will result in a reduced product lifespan.

Please Note: This relay cannot be switched at its maximum AC voltage and current at the same time. Ensure that total power of the load does not exceed the switching power for the relay. For example, you can switch this relay at 277V AC and 6.3A (1750VA), or at 145V AC and 12A (1750VA), but not at 277V and 12A (3324VA).

Estimated Relay Lifespan

The lifespan of the relays on this Phidget vary depending on how much current you're switching and whether it's AC or DC. The following graph illustrates the relationship between load current and relay lifespan:

FUNCTIONAL

The vertical axis is the lifespan of the relay (number of actuations) and the horizontal axis is load current in amps. As you can see, increasing load current from 5A to 10A can reduce relay life by more than half.

Software Objects

Channel NameAPIChannel
Power Relay DigitalOutput 0 - 3

API


Back Forward
Print this API

Documents

Code Samples

APILanguageOS
DigitalOutput C Multiple Download
DigitalOutput C# Windows Download
DigitalOutput Java Multiple Download
DigitalOutput JavaScript Any Download
DigitalOutput Objective-C macOS Download
DigitalOutput Python Multiple Download
DigitalOutput Visual Basic .NET Windows Download

Product History

Date Board Revision Device Version Comment
June 20170101Product Release

Getting Started

Welcome to the REL1000 user guide! In order to get started, make sure you have the following hardware on hand:


Next, you will need to connect the pieces:

REL1000 Functional.jpeg
  1. Connect the REL1000 to the VINT Hub using the Phidget cable.
  2. Connect the VINT Hub to your computer with a USB cable.
  3. Connect the circuits you're switching to the terminal blocks on the REL1000. If you want the circuit to be closed by default when the relay is not energized, connect the two ends of the circuit to the NC and COM terminals. If you want the circuit to be open by default, connect it to the NO and COM terminals instead. It doesn't matter which end of the circuit is connected connected to each of the two terminals in either case.
  4. Connect the power supply to the barrel jack on the REL1000.


Now that you have everything together, let's start using the REL1000!

Using the REL1000

Phidget Control Panel

In order to demonstrate the functionality of the REL1000, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines. If you would like to follow along, first take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the REL1000.

First Look

After plugging the REL1000 into your computer and opening the Phidget Control Panel, you will see something like this:

REL1000 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Relay Output

Double-click on a Digital Output object labelled Power Relay in order to run the example:

REL1000 RelayOutput Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Toggle the state of the relay by pressing the button.


Technical Details

Safety

Relay.png

The relays on the REL1000 are SPDT (Single pole, double throw). This means there is a common pin (C), a normally open pin (NO) and a normally closed pin (NC). When the relay is unpowered, the switch will be resting in the NC position, as seen in the diagram. When the relay's Digital Output object is toggled in software, it will switch to the NO position. If the Digital Output object is closed (using the Close() method), the relay will always return to the NC position. For this reason, it is considered a best practice to call Close() at the end of your program on in the 'closing' portion of your project.

If communication between the REL1000 and your computer is broken (e.g. if the Phidget cable is unplugged), the relay will not change state. You will, however, get a detach event for the attached channels of that Phidget, so you may want to handle this case in your Digital Output detach handler. Since communication is already interrupted at this point, you can't tell the Digital Output to return to the NC position, but you can set a warning in your program to notify someone to come and reset the system manually.

Further Reading

You can read more about how mechanical relays work on our Mechanical Relay Primer.

What to do Next

  • Software Overview - Find your preferred programming language here to learn how to write your own code with Phidgets!
  • General Phidget Programming - Read this general guide to the various aspects of programming with Phidgets. Learn how to log data into a spreadsheet, use Phidgets over the network, and much more.
  • Phidget22 API - The API is a universal library of all functions and definitions for programming with Phidgets. Just select your language and device and it'll give you a complete list of all properties, methods, events, and enumerations that are at your disposal.

VINT Hubs

This Phidget is a smart device that must be controlled by a VINT Hub. For more information about VINT, have a look at the VINT Primer. You can use a Phidget Cable to simply and easily connect the two devices. Here's a list of all of the different VINT Hubs currently available:

Product Board
Image Part Number Price Number of VINT Ports
HUB0000_0 $30.00 6

Phidget Cables

Use a Phidget cable to connect this device to the hub. You can solder multiple cables together in order to make even longer Phidget cables, but you should be aware of the effects of having long wires in your system.

Product Physical Properties
Image Part Number Price Cable Length
3002_0 $2.00 600 mm
3003_0 $1.50 100 mm
3004_0 $3.00 3.5 m
3034_0 $1.50 150 mm
3038_0 $2.25 1.2 m
3039_0 $2.75 1.8 m

Power Supplies

This Phidget requires a power supply between 8 and 30V DC. We recommend that you use a 12V 2A DC power supply, since this is more than enough power to operate all four relays. Select the power supply from the list below that matches your region's wall socket type.

Product Electrical Properties Physical Properties
Image Part Number Price Power Supply Voltage Min Power Supply Voltage Max Power Supply Current Wall Plug Style
3022_0 $10.00 11.4 V DC 12.6 V DC 2 A Australian
3023_1 $10.00 11.4 V DC 12.6 V DC 2 A European
3024_1 $10.00 11.4 V DC 12.6 V DC 2 A North American
3025_0 $10.00 11.4 V DC 12.6 V DC 2 A British
3080_0 $25.00 11.4 V DC 12.6 V DC 5 A Australian
3081_0 $25.00 11.4 V DC 12.6 V DC 5 A European
3082_0 $25.00 11.4 V DC 12.6 V DC 5 A North American
3083_0 $25.00 11.4 V DC 12.6 V DC 5 A British
3084_0 $6.75 11.4 V DC 12.6 V DC 500 mA European
3085_0 $6.75 11.4 V DC 12.6 V DC 500 mA North American
3086_0 $10.00 22.8 V DC 25.2 V DC 1 A North American

Have a look at our relay boards:

Product Electrical Properties
Image Part Number Price Load Current Max (AC) Load Voltage Max (AC) Load Current Max (DC) Load Voltage Max (DC)
1012_2 $100.00
1014_2 $60.00 12 A 277 V AC 7 A * 30 V DC
1017_1 $90.00 2 A 250 V AC 2 A * 120 V DC
3051_1 $19.00 12 A 277 V AC 7 A * 30 V DC
3052_1 $15.00 2.5 A 28 V AC 2.5 A 40 V DC
3053_0 $30.00 (per channel) 9 A 28 V AC (per channel) 9 A 40 V DC
3054_0 $10.00 500 mA 28 V AC 500 mA 40 V DC
REL1000_0 $30.00 12 A 277 V AC 7 A * 30 V DC
REL1100_0 $25.00 8 A 30 V DC
REL1101_0 $50.00 8 A 30 V DC
REL2001_0 $10.00 12 A 277 V AC 7 A * 30 V DC
REL2002_0 $12.00 2 A 240 V AC 2 A 120 V DC

Hockey Puck Relays

For applications with a higher switching power, Hockey Puck style relays are the more robust choice:

Product Electrical Properties
Image Part Number Price Control Voltage Min Control Voltage Max Load Voltage Min (DC) Load Voltage Max (DC) Load Voltage Max (AC)
3957_0 $22.00 3 V DC 32 V DC 5 V DC 120 V DC
3958_0 $45.00 3 V DC 32 V DC 5 V DC 120 V DC
3959_0 $16.00 4 V DC 32 V DC 280 V AC