Products for USB Sensing and Control Canada flag
Products for USB Sensing and Control

sales inquiries

quotes, distributor information, purchase orders
sales@phidgets.com

technical inquiries

support, advice, warranty, returns, misshipment
support@phidgets.com

website inquiries

corrections or suggestions
web@phidgets.com

Address

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada

PHIDGETS Inc.

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada
+1 403 282-7335

PhidgetInterfaceKit 0/0/8

ID: 1017_1B NRND

This product supports our Phidget21 libraries. Use as a drop-in replacement for legacy systems.

$85.00

Quantity Available: 903

Qty Price
5 $80.75
10 $76.50
25 $68.00
50 $59.50
100 $55.25
250 $51.00
500 $46.75
1000 $42.50
50+...

The PhidgetInterfaceKit 0/0/8 provides small signal relays with 8 relay outputs, rated at a combination of 250VAC, or 2 Amps, up to a maximum of 60 Watts. While typical mechanical relay boards are unable to switch signals due to an oxide buildup on the contacts, the 1017 excels at switching both signals and low-power applications.

Please Note: These relays cannot be switched at maximum current and maximum voltage at the same time. Ensure that the total power of the load does not exceed the switching power of the relay. For example, you can switch these relays at 200V DC and 0.3 A (60W), or 30V DC and 2A (60W), but not 200V DC and 2A (400W).

Features

  • Switch up to 8 separate signals or circuits with DPDT relays
  • Rated for 60W of DC power or 125 VA of AC power
  • For DC applications, switch a circuit of up to 120V or 2A (total power below 60W)
  • For AC applications, switch up to 250V or 2A (total power below 125 VA)
  • Mounting hardware included

Guides

Enclosures

You can protect your board from dust and debris by purchasing an enclosure. An enclosure will also prevent unintentional shorts caused by objects touching the pins on the bottom of the board or any terminal screws.

Product
Part Number Price
3803_3
Acrylic Enclosure for the 1017
$10.00

USB Cables

Use a USB cable to connect this Phidget to your computer. We have a number of different lengths available, although the maximum length of a USB cable is 5 meters due to limitations in the timing protocol. For longer distances, we recommend that you use a Single Board Computer to control the Phidget remotely.

Product Physical Properties
Part Number Price Connector A Connector B Cable Length
3017_1
USB-A to Mini-B Cable 28cm 24AWG
$3.00 USB Type A USB Mini-B 280 mm
CBL4011_0
USB-A to Mini-B Cable 28cm Right Angle
$3.50 USB Type A USB Mini-B (90 degree) 280 mm
3036_0
USB-A to Mini-B Cable 60cm 24AWG
$3.50 USB Type A USB Mini-B 600 mm
CBL4020_0
USB-C to Mini-B Cable 60cm 28AWG
$5.00 USB Type C USB Mini-B 600 mm
CBL4012_0
USB-A to Mini-B Cable 83cm Right Angle
$4.50 USB Type A USB Mini-B (90 degree) 830 mm
3037_0
USB-A to Mini-B Cable 120cm 24AWG
$4.00 USB Type A USB Mini-B 1.2 m
3018_0
USB-A to Mini-B Cable 180cm 24AWG
$4.00 USB Type A USB Mini-B 1.8 m
CBL4021_0
USB-C to Mini-B Cable 180cm 28AWG
$6.00 USB Type C USB Mini-B 1.8 m
3020_0
USB-A to Mini-B Cable 450cm 20AWG
$12.00 USB Type A USB Mini-B 4.5 m


Getting Started

Welcome to the 1017 user guide! In order to get started, make sure you have the following hardware on hand:


Next, you will need to connect the pieces:

1017 1 Connecting The Hardware.jpg
  1. Connect the power supply and load in series.
  2. Connect the ends of the series to the NO (normally open) and the middle pin of one of the terminals.
  3. Connect the Phidget to your computer using the USB cable.


Now that you have everything together, let's start using the 1017!

Using the 1017

Phidget Control Panel

In order to demonstrate the functionality of the 1017, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines.

Windows

To open the Phidget Control Panel on Windows, find the Ph.jpg icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel

Windows PhidgetTaskbar.PNG

macOS

To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the Ph.jpg icon to bring up the Phidget Control Panel.


For more information, take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1017.

First Look

After plugging the 1017 into your computer and opening the Phidget Control Panel, you will see something like this:

1017 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Relay Output

Double-click on a Digital Output object labelled Signal Relay in order to run the example:

1017 RelayOutput Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Toggle the state of the relay by pressing the button.


Finding The Addressing Information

Before you can access the device in your own code, and from our examples, you'll need to take note of the addressing parameters for your Phidget. These will indicate how the Phidget is physically connected to your application. For simplicity, these parameters can be found by clicking the button at the top of the Control Panel example for that Phidget.

The locate Phidget button is found in the device information box

In the Addressing Information window, the section above the line displays information you will need to connect to your Phidget from any application. In particular, note the Channel Class field as this will be the API you will need to use with your Phidget, and the type of example you should use to get started with it. The section below the line provides information about the network the Phidget is connected on if it is attached remotely. Keep track of these parameters moving forward, as you will need them once you start running our examples or your own code.

All the information you need to address your Phidget

Using Your Own Program

You are now ready to start writing your own code for the device. The best way to do that is to start from our Code Samples.

Select your programming language of choice from the drop-down list to get an example for your device. You can use the options provided to further customize the example to best suit your needs.

Code Sample Choose Language.png


Once you have your example, you will need to follow the instructions on the page for your programming language to get it running. To find these instructions, select your programming language from the Programming Languages page.

Technical Details

1017 1 Relay Diagram.jpg

Relays

A relay is an electrically-controlled switch. Although many types of electrical switches exist, a relay’s mechanical nature gives it the advantage of reliability and current-switching capacity. The main disadvantage to using mechanical relays is their limited life-span, as opposed to solid state relays who do not suffer from this drawback. For more information, check the Mechanical Relay Guide and the Solid State Relay Guide.

Using a Digital Output Relay

Relays have a connection scheme determined by the arrangement of contacts within the relay. Because relays are a type of switch, they are defined in the same way other electromechanical switches are defined.

In switch schemes, the number of poles represents the number of common terminals a switch has, and the number of throws represents the number of switchable terminals that exist for each pole. The relays used in the InterfaceKit 0/0/8 are DPDT relays: double pole, double throw. The internal construction of this type of relay is depicted in the diagram above. Many other types of relays exist: SPST, DPDT, and DPST, to name a few.

In a relay, one of the throw terminals is labelled normally closed (NC), and the other is labelled normally open (NO). As the name indicates, the normally closed terminal is the terminal connected to common when the relay coil is not powered. When the relay coil is energized by the relay control circuit, the electromagnetic field of the coil forces the switch element inside the relay to break its contact with the normally closed terminal and make contact with the normally open terminal. The switch element would then connect the normally open terminal and the common terminal.

Rated Current/Voltage/Power

These relays cannot be switched at maximum current and maximum voltage at the same time. Ensure that the total power of the load does not exceed the switching power of the relay. For example, you can switch these relays at 200V DC and 0.3 A (60W), or 30VDC and 2A (60W), but not 200VDC and 2A (400W).

Wetting Current

When a relay is in one switch position for a period of time, oxidation of the open contact(s) can occur. Depending upon the internal coating material of the contacts, oxide films of varying density will be displaced upon the surface of open contacts; this film acts as an insulator to current flow. When the relay is switched, a certain amount of current flowing through the contacts, known as the wetting current, is required to remove the film of oxides and ensure proper conduction. The wetting current required to operate this relay is low enough for use in signal switching applications. Check the specification table for your relay board to find out the Minimum Load Current or Wetting Current.

Load Noise

If highly inductive loads are used with this InterfaceKit, it is recommended that a noise limiting component be used to prevent damage to the device. An MOV, TVS diode, or kickback diode (for DC applications) shunted across the load will assist in dissipating voltage transients.

What to do Next

  • Programming Languages - Find your preferred programming language here and learn how to write your own code with Phidgets!
  • Phidget Programming Basics - Once you have set up Phidgets to work with your programming environment, we recommend you read our page on to learn the fundamentals of programming with Phidgets.


Product Specifications

Board Properties
Controlled By USB (Mini-USB)
USB Stack HID
API Object Name DigitalOutput
Current Consumption Min 14 mA
Current Consumption Max 300 mA
USB Speed Low Speed
Physical Properties
Switch Type DPDT
Recommended Wire Size 12 - 24 AWG
Switching Speed Max 20 cpm
Operating Temperature Min 0 °C
Operating Temperature Max 70 °C
Electrical Properties
Dielectric Strength 1.5 kV AC
Contact Resistance Max 50 mΩ
Load Voltage Max (DC) * 120 V DC
Load Voltage Max (AC) 250 V AC
Load Current Min 10 μA
Load Current Max (DC) 2 A
Load Current Max (AC) 2 A
Turn-on Time Max 18 ms
Turn-off Time Max 18 ms
Switching Power Max (Real) 60 W
Switching Power Max (Apparent) 125 VA
Current Consumption Min 14 mA
Current Consumption Max 300 mA
Customs Information
Canadian HS Export Code 8471.80.00
American HTS Import Code 8471.80.40.00
Country of Origin CN (China)

* This specification applies to the version of 1017_1 with black relays on it. If your 1017_1 has orange relays, the DC switching voltage is 200VDC.

Documents

Product History

Date Board Revision Device Version Packaging Revision Comment
February 20080100Product Release
February 20111100Different board size. Replaced USB connector with Mini-USB connector. Larger terminal blocks.
January 20181100BRemoved USB cable from packaging

Software Objects

Channel NameAPIChannel
Signal Relay DigitalOutput 0 - 7

API


Back Forward
Print this API

Code Samples



Example Options


Downloads

				Make your selections to display sample code.
					

Code Samples

Language:

APIDetailLanguageOS
DigitalOutput Visual Studio GUI C# Windows Download
DigitalOutput JavaScript Browser Download
DigitalOutput Multi-Channel Example JavaScript Browser Download
DigitalOutput Objective-C macOS Download
DigitalOutput Swift macOS Download
DigitalOutput Swift iOS Download
DigitalOutput Visual Basic .NET Windows Download
DigitalOutput Max/MSP Multiple Download

Have a look at our relay boards:

Product Electrical Properties
Part Number Price Load Current Max (AC) Load Voltage Max (AC) Load Current Max (DC) Load Voltage Max (DC)
1014_3
PhidgetInterfaceKit 0/0/4
$55.00 12 A 277 V AC 7 A * 30 V DC
1017_2
PhidgetInterfaceKit 0/0/8
$85.00 2 A 250 V AC 2 A 120 V DC
REL1101_1
16x Isolated Solid State Relay Phidget
$50.00 (per channel) 8 A (per channel) 30 V DC
REL1100_0
4x Isolated Solid State Relay Phidget
$25.00 (per channel) 8 A (per channel) 30 V DC
REL1000_0
4x Relay Phidget
$30.00 12 A 277 V AC 7 A * 30 V DC
REL2001_0
Relay Phidget
$10.00 12 A 277 V AC 7 A * 30 V DC
REL2002_0
Signal Relay Phidget
$12.00 2 A 240 V AC 2 A 120 V DC
REL2103_0
Solid State Relay Phidget
$15.00 10 A 30 V AC * 10 A 30 V DC
3051_1B
Dual Relay Board
$17.00 12 A 277 V AC 7 A * 30 V DC
3053_0
Dual SSR Relay Board
$30.00 (per channel) 9 A 28 V AC (per channel) 9 A 40 V DC
1012_3
PhidgetInterfaceKit 0/16/16
$95.00
3052_1
SSR Relay Board 2.5A
$15.00 2.5 A 28 V AC 2.5 A 40 V DC
1014_2B
PhidgetInterfaceKit 0/0/4
$55.00 12 A 277 V AC 7 A * 30 V DC
1017_1B
PhidgetInterfaceKit 0/0/8
$85.00 2 A 250 V AC 2 A * 120 V DC
3054_0
SSR Relay Board 0.5A
$10.00 500 mA 28 V AC 500 mA 40 V DC