Products for USB Sensing and Control

Products for USB Sensing and Control

PHIDGETS Inc.

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada
+1 403 282-7335

PhidgetInterfaceKit 8/8/8

ID: 1018_2

The Phidgets workhorse. Connect sensors, control outputs, and read in digital inputs.

$80.00

Quantity Available: 414

Qty Price
5 $76.00
10 $72.00
25 $64.00
50 $56.00
100 $52.00
250 $48.00
500 $44.00
1000 $40.00

Analog Inputs

The analog inputs are used to measure continuous voltage outputs generated by various sensors such as temperature, humidity, position, or pressure. Phidgets offers a wide variety of sensors that can be plugged directly into the board using the cable included with the sensor.

Sampling rates can be set at 1ms, 2ms, 4ms, 8ms and multiple of 8ms up to 1000ms.

For more information about these inputs and their connectors, have a look at the Analog Input Primer.

Digital Inputs

The Digital Inputs have a Digital Input Hardware Filter to eliminate false triggering from electrical noise. They can be used to convey the state of devices such as push buttons, limit switches, relays, and logic levels.

Digital Outputs

The Digital Outputs can be used to drive LEDs, solid state relays (such as the 3052 SSR Relay Board), transistors; in fact, anything that will accept a CMOS signal.

Comes packaged with

Product Specifications

Board
Controlled By USB
API Object Name DigitalInput, DigitalOutput, VoltageInput, VoltageRatioInput
USB Voltage Min 4.6 V DC
USB Voltage Max 5.5 V DC
Current Consumption Min 13 mA
Current Consumption Max 500 mA
Available External Current 487 mA
Recommended Wire Size 16 - 26 AWG
USB Speed Full Speed
Operating Temperature Min 0 °C
Operating Temperature Max 70 °C
Voltage Inputs
Number of Voltage Inputs 8
Voltage Input Resolution 10 bit
Input Impedance 900 kΩ
Input Voltage Min 0 V DC
Input Voltage Max 5 V DC
5V Reference Error Max 0.5 %
Voltage Input Update Rate Min 1 samples/s
Voltage Input Update Rate Max (4 Channels) 1000 samples/s
Voltage Input Update Rate Max (8 Channels) 500 samples/s
Voltage Input Update Rate Max (WebService) 62.5 samples/s
Digital Inputs
Number of Digital Inputs 8
Pull-up Resistance 15 kΩ
Low Voltage Max (True) 900 mV DC
High Voltage Min (False) 4.2 V DC
Low Voltage Trigger Length Min 4 ms
High Voltage Trigger Length Min 15 ms
Digital Input Voltage Max ± 15 V DC
Digital Input Update Rate 125 samples/s
Digital Outputs
Number of Digital Outputs 8
Series Resistance 300 Ω
Digital Output Current Max 16 mA
Digital Output Voltage Min 0 V DC
Digital Output Voltage Max 5 V DC

Software Objects

Channel NameAPIChannel
Voltage Input VoltageInput 0 - 7
Voltage Ratio Input VoltageRatioInput 0 - 7
Digital Input DigitalInput 0 - 7
Digital Output DigitalOutput 0 - 7

API


Back Forward
Print this API

Documents

Library & Driver Downloads

Code Samples

APILanguageOS
VoltageInput C Multiple Download
VoltageInput C# Windows Download
VoltageInput Java Multiple Download
VoltageInput JavaScript Any Download
VoltageInput Objective-C macOS Download
VoltageInput Python Multiple Download
VoltageInput Visual Basic .NET Windows Download
VoltageRatioInput C Multiple Download
VoltageRatioInput C# Windows Download
VoltageRatioInput Java Multiple Download
VoltageRatioInput JavaScript Any Download
VoltageRatioInput Objective-C macOS Download
VoltageRatioInput Python Multiple Download
DigitalInput C Multiple Download
DigitalInput C# Windows Download
DigitalInput Java Multiple Download
DigitalInput JavaScript Any Download
DigitalInput Objective-C macOS Download
DigitalInput Python Multiple Download
DigitalInput Visual Basic .NET Windows Download
DigitalOutput C Multiple Download
DigitalOutput C# Windows Download
DigitalOutput Java Multiple Download
DigitalOutput JavaScript Any Download
DigitalOutput Objective-C macOS Download
DigitalOutput Python Multiple Download
DigitalOutput Visual Basic .NET Windows Download

Product History

Date Board Revision Device Version Comment
July 2007 0824Product Release
September 20070825SPI Overclocking issue fixed
May 2008 1826Added RC Filtering to Digital Inputs, PCB X Dimension increased to 3.27”
April 2010 2900Configurable data sampling speed. Replace USB connector with Mini-USB connector
April 2010 2901Fixed bugs relating to changing the ratiometric setting and overflow reporting
September 20102902Fixed certain output set commands from PC being ignored
November 2010 2903USB Product Name descriptor changed from "Phidget" to "PhidgetInterfaceKit"
May 2011 2904getLabelString fixed for labels longer than 7 characters

Getting Started

Welcome to the 1018 user guide! In order to get started, make sure you have the following hardware on hand:


Next, you will need to connect the pieces:

1018 2 Connecting The Hardware.jpg
  1. Connect any sensors to the voltage inputs on the 1018.
  2. Connect the 1018 InterfaceKit to the computer using a USB cable.
  3. Connect a switch or a piece of wire connecting ground to one of the digital input terminals.
  4. Connect an LED to one of the Digital Outputs by inserting the long LED wire into the digital output 0 and the shorter wire into Ground.


Now that you have everything together, let's start using the 1018!

Testing Using Windows

Phidget Control Panel

In order to demonstrate the functionality of the 1018, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines. If you would like to follow along, first take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1018.

First Look

After plugging the 1018 into your computer and opening the Phidget Control Panel, you will see something like this:

1018 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Voltage Input

Double-click on a Voltage Input object in order to run the example:

1010 1018 1019 VoltageInputSensor Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


Voltage Ratio Input

Double-click on a Voltage Ratio Input object in order to run the example:

1010 1018 1019 VoltageRatioSensor Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • The voltage ratio is reported in Volts per Volt. For example, if the Phidget is providing 5V and the sensor is sending back 2.5V, the ratio will be 0.5V/V.
  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


Digital Input

Double-click on a Digital Input object in order to run the example:

1010 1018 1019 DigitalInput Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • This is an active-low device, therefore, it will be true when connected to ground, and false when connected to a high voltage.

Digital Output

Double-click on a Digital Output object in order to run the example:

1010 1018 1019 DigitalOutput Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Toggle the state of the digital output by pressing the button.

Technical Details

If you want to know more about the input/output capabilities of the 1018 InterfaceKit, check the Digital Input Primer, InterfaceKit Digital Outputs page, and the Analog Input Primer.

What to do Next

  • Software Overview - Find your preferred programming language here to learn how to write your own code with Phidgets!
  • General Phidget Programming - Read this general guide to the various aspects of programming with Phidgets. Learn how to log data into a spreadsheet, use Phidgets over the network, and much more.
  • Phidget22 API - The API is a universal library of all functions and definitions for programming with Phidgets. Just select your language and device and it'll give you a complete list of all properties, methods, events, and enumerations that are at your disposal.

Enclosures

You can protect your board from dust and debris by purchasing an enclosure. An enclosure will also prevent unintentional shorts caused by objects touching the pins on the bottom of the board or any terminal screws.

Product Physical Properties
Image Part Number Price Material
3804_3 $8.50 Clear Acrylic
3852_0 $6.00 Polycarbonate

USB Cables

Use a USB cable to connect this Phidget to your computer. We have a number of different lengths available, although the maximum length of a USB cable is 5 meters due to limitations in the timing protocol. For longer distances, we recommend that you use a Single Board Computer to control the Phidget remotely.

Product Physical Properties
Image Part Number Price Connector A Connector B Cable Length
3017_1 $3.00 USB Type A USB Mini-B 280 mm
3018_0 $5.00 USB Type A USB Mini-B 1.8 m
3020_0 $12.00 USB Type A USB Mini-B 4.5 m
3036_0 $3.50 USB Type A USB Mini-B 600 mm
3037_0 $4.00 USB Type A USB Mini-B 1.2 m

Phidget Cables

Each analog sensor will come with its own Phidget cable, but if you need extras we have a full list down below. You can solder multiple cables together in order to make even longer Phidget cables, but you should be aware of the effects of having long wires in your system.

Product Physical Properties
Image Part Number Price Cable Length
3002_0 $2.00 600 mm
3003_0 $1.50 100 mm
3004_0 $3.00 3.5 m
3034_0 $1.50 150 mm
3038_0 $2.25 1.2 m
3039_0 $2.75 1.8 m

The following boards also have analog inputs, digital inputs, and digital outputs:

Product Voltage Inputs Digital Outputs Digital Inputs
Image Part Number Price Number of Voltage Inputs Number of Digital Outputs Number of Digital Inputs
1010_0 $80.00 8 8 8
1011_0 $50.00 2 2 2
1018_2 $80.00 8 8 8
1019_1 $115.00 8 8 8
1073_0 $140.00 8 8 8
1203_2 $125.00 8 8 8