Voltage Input Guide
A voltage input is a device that measure an analog signal between 0 and 5 volts DC. Check out this guide for more information.
The DAQ1000 allows you to connect up to eight analog sensors or devices. This Phidget connects to your computer through a VINT Hub.
This Phidget is a smart device that must be controlled by a VINT Hub. For more information about VINT, have a look at the VINT Overview page. You can use a Phidget Cable to simply and easily connect the two devices. Here's a list of all of the different VINT Hubs currently available:
Product | Board Properties | |||
---|---|---|---|---|
Part Number | Price | Number of VINT Ports | VINT Communication Speed Max | Controlled By |
VINT Hub Phidget
|
$40.00 | 6 | 1 Mbit/s | USB (Mini-USB) |
1-Port VINT Hub Phidget
|
$24.00 | 1 | 1 Mbit/s | USB (USB-A) |
VINT Hub Phidget
|
$35.00 | 6 | 1 Mbit/s | USB (Mini-USB) |
VINT Hub Phidget
|
$30.00 | 6 | 100 kbit/s | USB (Mini-USB) |
Wireless VINT Hub
|
$60.00 | 6 | 100 kbit/s | Local Network (Ethernet or Wi-Fi) |
PhidgetSBC4
|
$120.00 | 6 | 100 kbit/s | — |
Use a Phidget cable to connect this device to the hub and to connect sensors to this Phidget. Each analog sensor will come with its own Phidget cable, but if you need extras we have a full list down below. You can solder multiple cables together in order to make even longer Phidget cables, but you should be aware of the effects of having long wires in your system.
Product | Physical Properties | |
---|---|---|
Part Number | Price | Cable Length |
Phidget Cable 10cm
|
$1.50 | 100 mm |
Phidget Cable 30cm
|
$1.75 | 300 mm |
Phidget Cable 60cm
|
$2.00 | 600 mm |
Phidget Cable 60cm
|
$2.00 | 600 mm |
Phidget Cable 90cm
|
$2.00 | 900 mm |
Phidget Cable 120cm
|
$2.25 | 1.2 m |
Phidget Cable 150cm
|
$2.50 | 1.5 m |
Phidget Cable 180cm
|
$2.75 | 1.8 m |
Phidget Cable 350cm
|
$3.00 | 3.5 m |
Phidget Cable Kit
|
$10.00 | 80 mm |
The DAQ1000 has eight ports that connect to analog sensors. Each port has two modes: Voltage Input (for ordinary 5V sensors) and Voltage Ratio Input (for ratiometric sensors). The Phidgets library allows you to select your Phidget sensors’ part numbers to automatically convert the voltage into appropriate measurement units.
You can use your Control Panel to explore your Phidget's channels.
1. Open your Control Panel, and you will find the following channels:
2. Double click on a channel to open an example program. Each channel belongs to the Voltage Input or Voltage Ratio Input channel class:
In your Control Panel, double click on "Voltage Input":
In your Control Panel, double click on "Voltage Ratio Input":
Before you open a Phidget channel in your program, you can set these properties to specify which channel to open. You can find this information through the Control Panel.
1. Open the Control Panel and double-click on the red map pin icon:
2. The Addressing Information window will open. Here you will find all the information you need to address your Phidget in your program.
See the Phidget22 API for your language to determine exact syntax for each property.
Note: Graphing and logging is currently only supported in the Windows version of the Phidget Control Panel.
In the Phidget Control Panel, open the channel for your device and click on the icon next to the data type that you want to plot. This will open up a new window:
If you need more complex functionality such as logging multiple sensors to the same sheet or performing calculations on the data, you'll need to write your own program. Generally this will involve addressing the correct channel, opening it, and then creating an Event Handler and adding graphing/logging code to it.
The quickest way to get started is to download some sample code for your desired programming language and then search google for logging or plotting in that language (e.g. "how to log to csv in python") and add the code to the existing change handler.
You can perform filtering on the raw data in order to reduce noise in your graph. For more information, see the Control Panel Graphing page.
You can perform a transform on the incoming data to get different graph types that may provide insights into your sensor data. For more information on how to use these graph types, see the Control Panel Graphing page.
The Change Trigger is the minimum change in the sensor data needed to trigger a new data event.
The Data Interval is the time (in ms) between data events sent out from your Phidget.
The Data Rate is the reciprocal of Data Interval (measured in Hz), and setting it will set the reciprocal value for Data Interval and vice-versa.
You can modify one or both of these values to achieve different data outputs. You can learn more about these properties here.
Firmware Upgrade
MacOS users can upgrade device firmware by double-clicking the device row in the Phidget Control Panel.
Linux users can upgrade via the phidget22admin tool (see included readme for instructions).
Windows users can upgrade the firmware for this device using the Phidget Control Panel as shown below.
Firmware Downgrade
Firmware upgrades include important bug fixes and performance improvements, but there are some situations where you may want to revert to an old version of the firmware (for instance, when an application you're using is compiled using an older version of phidget22 that doesn't recognize the new firmware).
MacOS and Linux users can downgrade using the phidget22admin tool in the terminal (see included readme for instructions).
Windows users can downgrade directly from the Phidget Control Panel if they have driver version 1.9.20220112 or newer:
Firmware Version Numbering Schema
Phidgets device firmware is represented by a 3-digit number. For firmware patch notes, see the device history section on the Specifications tab on your device's product page.
If you want to know more about the capabilities of the analog inputs on this device, check the Analog Input Guide.
Board Properties | |
---|---|
Controlled By | VINT |
VINT Communication Speed Max | 100 kbit/s |
Electrical Properties | |
Current Consumption Min | 1 mA |
Current Consumption Max | * 500 mA |
Voltage Inputs | |
Measurement Error Max | 0.2 % |
Voltage Input Resolution (bits) | 12 bit |
Input Voltage Max (DC) | 5 V DC |
Input Voltage Min (DC) | ** 85 mV DC |
Sensor Input Impedance | 324 kΩ |
Number of Voltage Inputs | 8 |
Sampling Interval Max | 60 s/sample |
Sampling Interval Min | 20 ms/sample |
Physical Properties | |
Operating Temperature Min | -40 °C |
Operating Temperature Max | 85 °C |
Customs Information | |
Canadian HS Export Code | 8471.80.00 |
American HTS Import Code | 8471.80.40.00 |
Country of Origin | CN (China) |
* Varies depending on number of attached sensors.
** Any voltage between 85mV and 0 volts will result in a reading of 0 volts.
Date | Board Revision | Device Version | Comment |
---|---|---|---|
August 2017 | 0 | 102 | Product Release |
January 2018 | 0 | 103 | Disabled saturation to make cosnsistent with other devices |
January 2019 | 0 | 110 | Voltage Input range increased to 5.25V |
February 2019 | 0 | 111 | Voltage Input max. change trigger increased to 5.25V |
April 2020 | 0 | 112 | VINT Library code updated |
April 2022 | 0 | 114 | Increased oversampling for better effective resolution, fixed unreliable voltages below 85mV by rounding down to zero |
Channel Name | API | Channel |
---|---|---|
Voltage Ratio Input | VoltageRatioInput | 0 - 7 |
Voltage Input | VoltageInput | 0 - 7 |
API | Detail | Language | OS | |
---|---|---|---|---|
VoltageRatioInput | Visual Studio GUI | C# | Windows | Download |
VoltageRatioInput | Load Cell Calibrator | C# | Windows | Download |
VoltageRatioInput | JavaScript | Browser | Download | |
VoltageRatioInput | Objective-C | macOS | Download | |
VoltageRatioInput | Swift | macOS | Download | |
VoltageRatioInput | Swift | iOS | Download | |
VoltageRatioInput | Visual Basic .NET | Windows | Download | |
VoltageRatioInput | Max/MSP | Multiple | Download | |
VoltageInput | Visual Studio GUI | C# | Windows | Download |
VoltageInput | Multi-Channel Example | JavaScript | Browser | Download |
VoltageInput | JavaScript | Browser | Download | |
VoltageInput | Objective-C | macOS | Download | |
VoltageInput | Swift | macOS | Download | |
VoltageInput | Swift | iOS | Download | |
VoltageInput | Visual Basic .NET | Windows | Download | |
VoltageInput | Max/MSP | Multiple | Download |
Product | Voltage Inputs | ||
---|---|---|---|
Part Number | Price | Number of Voltage Inputs | Voltage Input Resolution (bits) |
VINT Hub Phidget
|
$40.00 | 6 (Shared) | *** 15 bit |
1-Port VINT Hub Phidget
|
$24.00 | 1 (Shared) | ** 16 bit |
VINT Hub Phidget
|
$35.00 | 6 (Shared) | * 15 bit |
VINT Hub Phidget
|
$30.00 | 6 (Shared) | *** 15 bit |
Wireless VINT Hub
|
$60.00 | 6 (Shared) | * 16 bit |
PhidgetSBC4
|
$120.00 | 6 (Shared) | * 16 bit |
8x Voltage Input Phidget
|
$20.00 | 8 | 12 bit |
PhidgetInterfaceKit 8/8/8
|
$80.00 | 8 | — |
PhidgetInterfaceKit 2/2/2
|
$50.00 | 2 | 10 bit |
PhidgetInterfaceKit 8/8/8
|
$80.00 | 8 | 10 bit |
PhidgetInterfaceKit 8/8/8 Mini-Format
|
$70.00 | 8 | 10 bit |
PhidgetInterfaceKit 8/8/8 w/6 Port Hub
|
$110.00 | 8 | 10 bit |
PhidgetTextLCD 20X2 : White : Integrated PhidgetInterfaceKit 8/8/8
|
$70.00 | 8 | 10 bit |
Product | Voltage Sensor | Sensor Properties | ||
---|---|---|---|---|
Part Number | Price | Voltage Difference Max | Input Voltage Min (DC) | Input Voltage Max (DC) |
(±1V) Voltage Input Phidget
|
$25.00 | ± 1 V DC | — | — |
(±40V) Voltage Input Phidget
|
$25.00 | ± 40 V DC | — | — |
20-bit (±40V) Voltage Input Phidget
|
$50.00 | ± 40 V DC | — | — |
Versatile Input Phidget
|
$20.00 | — | — | — |
Precision Voltage Sensor
|
$17.00 | ± 30 V DC | — | — |