Products for USB Sensing and Control

Products for USB Sensing and Control

PHIDGETS Inc.

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada
+1 403 282-7335

PhidgetInterfaceKit 8/8/8 Mini-Format

ID: 1010_0

The ideal product for OEMs and Systems Integrators. The small DIP-36 package will plug right into your own designed board.

$80.00

Quantity Available: 303

Qty Price
5 $76.00
10 $72.00
25 $64.00
50 $56.00
100 $52.00
250 $48.00
500 $44.00
1000 $40.00

Provides the full functionality of the 8/8/8 I/O board in a small DIP-36 package that is plugged into your own board. If you want the 8/8/8 functionality but space is an issue, or you are building a number of units and want to eliminate wiring between boards, this is the way to go.

You can create a smaller system by integrating custom electronics into your PCB, and by only using connectors for the wiring required in your system. Eliminating or reducing wiring also helps create a much more reliable system.

The 1010 - PhidgetInterfaceKit allows you to connect devices to any of 8 analog inputs, 8 digital inputs and 8 digital outputs. It provides a generic, convenient way to interface your PC with various devices.

Warning

warning
The PhidgetInterfaceKit 8/8/8 Mini-Format is intended for OEMs and system integrators.

In order to use the 1010, you must be comfortable with designing your own circuit. You will need to understand the signals coming from and going to the 1010.

If you are not familiar with Phidgets, we recommend purchasing a 1018 to familiarize yourself with Phidget concepts before attempting to design the 1010 into your system.

Product Specifications

Board
Controlled By USB
API Object Name DigitalInput, DigitalOutput, VoltageInput, VoltageRatioInput
USB Voltage Min 4.6 V DC
USB Voltage Max 5.5 V DC
Current Consumption Min 13 mA
Current Consumption Max 500 mA
Available External Current 487 mA
USB Speed Full Speed
Operating Temperature Min 0 °C
Operating Temperature Max 70 °C
Voltage Inputs
Number of Voltage Inputs 8
Voltage Input Resolution 10 bit
Input Impedance 900 kΩ
Input Voltage Min 0 V DC
Input Voltage Max 5 V DC
5V Reference Error Max 0.5 %
Voltage Input Update Rate Min 1 samples/s
Voltage Input Update Rate Max (4 Channels) 1000 samples/s
Voltage Input Update Rate Max (8 Channels) 500 samples/s
Voltage Input Update Rate Max (WebService) 62.5 samples/s
Digital Inputs
Number of Digital Inputs 8
Pull-up Resistance 15 kΩ
Low Voltage Max (True) 900 mV DC
High Voltage Min (False) 4.2 V DC
Low Voltage Trigger Length Min 4 ms
High Voltage Trigger Length Min 15 ms
Digital Input Voltage Max ± 15 V DC
Digital Input Update Rate 125 samples/s
Digital Outputs
Number of Digital Outputs 8
Series Resistance 300 Ω
Digital Output Current Max 16 mA
Digital Output Voltage Min 0 V DC
Digital Output Voltage Max 5 V DC

Software Objects

Channel NameAPIChannel
Voltage Input VoltageInput 0 - 7
Voltage Ratio Input VoltageRatioInput 0 - 7
Digital Input DigitalInput 0 - 7
Digital Output DigitalOutput 0 - 7

API


Back Forward
Print this API

Documents

Library & Driver Downloads

Code Samples

APILanguageOS
VoltageInput C Multiple Download
VoltageInput C# Windows Download
VoltageInput Java Multiple Download
VoltageInput Java Android Download
VoltageInput JavaScript Any Download
VoltageInput Objective-C macOS Download
VoltageInput Python Multiple Download
VoltageInput Visual Basic .NET Windows Download
VoltageRatioInput C Multiple Download
VoltageRatioInput C# Windows Download
VoltageRatioInput Java Multiple Download
VoltageRatioInput Java Android Download
VoltageRatioInput JavaScript Any Download
VoltageRatioInput Objective-C macOS Download
VoltageRatioInput Python Multiple Download
VoltageRatioInput Visual Basic .NET Windows Download
DigitalInput C Multiple Download
DigitalInput C# Windows Download
DigitalInput Java Multiple Download
DigitalInput Java Android Download
DigitalInput JavaScript Any Download
DigitalInput Objective-C macOS Download
DigitalInput Python Multiple Download
DigitalInput Visual Basic .NET Windows Download
DigitalOutput C Multiple Download
DigitalOutput C# Windows Download
DigitalOutput Java Multiple Download
DigitalOutput Java Android Download
DigitalOutput JavaScript Any Download
DigitalOutput Objective-C macOS Download
DigitalOutput Python Multiple Download
DigitalOutput Visual Basic .NET Windows Download

Product History

Date Board Revision Device Version Comment
April 20110903Product Release
May 2011 0904getLabelString fix for lables > 7 characters

Getting Started

Welcome to the 1010 user guide! In order to get started, make sure you have the following hardware on hand:

  • 1010 Phidget InterfaceKit
  • USB cable and computer
  • breadboard/prototyping board
  • something to use with the 1010 (e.g. LEDs, switches, analog sensors, etc.)


Next, you will need to connect the pieces:

1010 0 Connecting The Hardware.jpg
  1. Plug the 1010 into the prototyping board.
  2. Connect any/all test hardware to the 1010. View the pinout in the technical section for help.
  3. Connect the 1010 to the computer using the USB cable.


Now that you have everything together, let's start using the 1010!


Using the 1010

Phidget Control Panel

In order to demonstrate the functionality of the 1010, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines. If you would like to follow along, first take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1010.

First Look

After plugging the 1010 into your computer and opening the Phidget Control Panel, you will see something like this:

1010 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Voltage Input

Double-click on a Voltage Input object in order to run the example:

1010 1018 1019 VoltageInputSensor Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


Voltage Ratio Input

Double-click on a Voltage Ratio Input object in order to run the example:

1010 1018 1019 VoltageRatioSensor Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • The voltage ratio is reported in Volts per Volt. For example, if the Phidget is providing 5V and the sensor is sending back 2.5V, the ratio will be 0.5V/V.
  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


Digital Input

Double-click on a Digital Input object in order to run the example:

1010 1018 1019 DigitalInput Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • This is an active-low device, therefore, it will be true when connected to ground, and false when connected to a high voltage.

Digital Output

Double-click on a Digital Output object in order to run the example:

1010 1018 1019 DigitalOutput Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Toggle the state of the digital output by pressing the button.


Technical Details

1010 0 PinOut.jpg
Pin Description
5V USB Power Supply - made available to your application if it requires a small amount of current (<400mA). All 5V pins are connected together internally.
GND USB Ground - all ground pins are connected together internally.
D+ and D- differential USB data lines
IN0 - IN7 digital inputs. For more information, see the Digital Input Primer.
OUT0 - OUT7 digital outputs. For more information, see the InterfaceKit Digital Outputs page.
AIN0 - AIN7 analog inputs. For more information, see the Analog Input Primer.


For dimensions, please refer to the Mechanical Drawing on the Product Page.

What to do Next

  • Software Overview - Find your preferred programming language here to learn how to write your own code with Phidgets!
  • General Phidget Programming - Read this general guide to the various aspects of programming with Phidgets. Learn how to log data into a spreadsheet, use Phidgets over the network, and much more.
  • Phidget22 API - The API is a universal library of all functions and definitions for programming with Phidgets. Just select your language and device and it'll give you a complete list of all properties, methods, events, and enumerations that are at your disposal.

USB Cables

Use a USB cable to connect this Phidget to your computer. We have a number of different lengths available, although the maximum length of a USB cable is 5 meters due to limitations in the timing protocol. For longer distances, we recommend that you use a Single Board Computer to control the Phidget remotely.

Product Physical Properties
Image Part Number Price Connector A Connector B Cable Length
3017_1 $3.00 USB Type A USB Mini-B 280 mm
3018_0 $5.00 USB Type A USB Mini-B 1.8 m
3020_0 $12.00 USB Type A USB Mini-B 4.5 m
3036_0 $3.50 USB Type A USB Mini-B 600 mm
3037_0 $4.00 USB Type A USB Mini-B 1.2 m

The following boards also have analog inputs, digital inputs, and digital outputs:

Product Voltage Inputs Digital Outputs Digital Inputs
Image Part Number Price Number of Voltage Inputs Number of Digital Outputs Number of Digital Inputs
1010_0 $80.00 8 8 8
1011_0 $50.00 2 2 2
1019_1 $115.00 8 8 8
1073_0 $140.00 8 8 8
1203_2 $125.00 8 8 8