Digital Output Guide
A digital signal is either high or low (1 or 0). Digital output devices can generate a high or low signal, which drives other electronics. Read this guide for more information.
The PhidgetInterfaceKit 8/8/8 Mini-Format is intended for OEMs and system integrators. It provides the full functionality of the PhidgetInterfaceKit 8/8/8 I/O board in a small DIP-36 package that is plugged into your own board. If you want the 8/8/8 functionality but space is an issue, or you are building a number of units and want to eliminate wiring between boards, this is the way to go.
You can create a smaller system by integrating custom electronics into your PCB, and by only using connectors for the wiring required in your system. Eliminating or reducing wiring also helps create a much more reliable system.
The 1010 - PhidgetInterfaceKit allows you to connect devices to any of 8 analog inputs, 8 digital inputs and 8 digital outputs. It provides a generic, convenient way to interface your PC with various devices.
In order to use the 1010, you must be comfortable with designing your own circuit. You will need to understand the signals coming from and going to the 1010.
Use a USB cable to connect this Phidget to your computer. We have a number of different lengths available, although the maximum length of a USB cable is 5 meters due to limitations in the timing protocol. For longer distances, we recommend that you use a Single Board Computer to control the Phidget remotely.
Product | Physical Properties | |||
---|---|---|---|---|
Part Number | Price | Connector A | Connector B | Cable Length |
USB-A to Mini-B Cable 28cm 24AWG
|
$3.00 | USB Type A | USB Mini-B | 280 mm |
USB-A to Mini-B Cable 28cm Right Angle
|
$3.50 | USB Type A | USB Mini-B (90 degree) | 280 mm |
USB-A to Mini-B Cable 60cm 24AWG
|
$3.50 | USB Type A | USB Mini-B | 600 mm |
USB-C to Mini-B Cable 60cm 28AWG
|
$5.00 | USB Type C | USB Mini-B | 600 mm |
USB-A to Mini-B Cable 83cm Right Angle
|
$4.50 | USB Type A | USB Mini-B (90 degree) | 830 mm |
USB-A to Mini-B Cable 120cm 24AWG
|
$4.00 | USB Type A | USB Mini-B | 1.2 m |
USB-A to Mini-B Cable 180cm 24AWG
|
$4.00 | USB Type A | USB Mini-B | 1.8 m |
USB-C to Mini-B Cable 180cm 28AWG
|
$6.00 | USB Type C | USB Mini-B | 1.8 m |
USB-A to Mini-B Cable 450cm 20AWG
|
$12.00 | USB Type A | USB Mini-B | 4.5 m |
Welcome to the 1010 user guide! In order to get started, make sure you have the following hardware on hand:
Next, you will need to connect the pieces:
Now that you have everything together, let's start using the 1010!
In order to demonstrate the functionality of the 1010, the Phidget Control Panel running on a Windows machine will be used.
The Phidget Control Panel is available for use on both macOS and Windows machines.
To open the Phidget Control Panel on Windows, find the icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel
To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the icon to bring up the Phidget Control Panel.
For more information, take a look at the getting started guide for your operating system:
Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1010.
After plugging the 1010 into your computer and opening the Phidget Control Panel, you will see something like this:
The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:
The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.
Double-click on a Voltage Input object in order to run the example:
General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:
For more information about Voltage Inputs, check out the Voltage Input Primer.
Double-click on a Voltage Ratio Input object in order to run the example:
General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:
For more information about Voltage Ratio Inputs, check out the Voltage Ratio Input Primer.
Double-click on a Digital Input object in order to run the example:
General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:
For more information about Digital Inputs, take a look at the Digital Input Primer
Double-click on a Digital Output object in order to run the example:
General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:
Before you can access the device in your own code, and from our examples, you'll need to take note of the addressing parameters for your Phidget. These will indicate how the Phidget is physically connected to your application. For simplicity, these parameters can be found by clicking the button at the top of the Control Panel example for that Phidget.
In the Addressing Information window, the section above the line displays information you will need to connect to your Phidget from any application. In particular, note the Channel Class field as this will be the API you will need to use with your Phidget, and the type of example you should use to get started with it. The section below the line provides information about the network the Phidget is connected on if it is attached remotely. Keep track of these parameters moving forward, as you will need them once you start running our examples or your own code.
You are now ready to start writing your own code for the device. The best way to do that is to start from our Code Samples.
Select your programming language of choice from the drop-down list to get an example for your device. You can use the options provided to further customize the example to best suit your needs.
Once you have your example, you will need to follow the instructions on the page for your programming language to get it running. To find these instructions, select your programming language from the Programming Languages page.
Pin | Description |
5V | USB Power Supply - made available to your application if it requires a small amount of current (<400mA). All 5V pins are connected together internally. |
GND | USB Ground - all ground pins are connected together internally. |
D+ and D- | differential USB data lines |
IN0 - IN7 | digital inputs. For more information, see the Digital Input Guide. |
OUT0 - OUT7 | digital outputs. For more information, see the InterfaceKit Digital Outputs page. |
AIN0 - AIN7 | analog inputs. For more information, see the Analog Input Guide. |
For dimensions, please refer to the Mechanical Drawing on the Product Page.
Board Properties | |
---|---|
Controlled By | USB (Mini-USB) |
API Object Name | DigitalInput, DigitalOutput, VoltageInput, VoltageRatioInput |
USB Voltage Min | 4.6 V DC |
USB Voltage Max | 5.5 V DC |
Current Consumption Min | 13 mA |
Current Consumption Max | 500 mA |
Available External Current | 487 mA |
USB Speed | Full Speed |
Operating Temperature Min | 0 °C |
Operating Temperature Max | 70 °C |
Voltage Inputs | |
Number of Voltage Inputs | 8 |
Voltage Input Resolution (bits) | 10 bit |
Input Impedance | 900 kΩ |
Input Voltage Min (DC) | 0 V DC |
Input Voltage Max (DC) | 5 V DC |
5V Reference Error Max | 0.5 % |
Voltage Input Update Rate Min | 1 samples/s |
Voltage Input Update Rate Max (4 Channels) | 1000 samples/s |
Voltage Input Update Rate Max (8 Channels) | 500 samples/s |
Voltage Input Update Rate Max (WebService) | 62.5 samples/s |
Digital Inputs | |
Number of Digital Inputs | 8 |
Pull-up Resistance | 15 kΩ |
Low Voltage Max (True) | 900 mV DC |
High Voltage Min (False) | 4.2 V DC |
Low Voltage Trigger Length Min | 4 ms |
High Voltage Trigger Length Min | 15 ms |
Digital Input Voltage Max | ± 15 V DC |
Digital Input Update Rate | 125 samples/s |
Digital Outputs | |
Number of Digital Outputs | 8 |
Series Resistance | 300 Ω |
Digital Output Current Max | 16 mA |
Digital Output Voltage Min | 0 V DC |
Digital Output Voltage Max | 5 V DC |
Customs Information | |
Canadian HS Export Code | 8471.80.00 |
American HTS Import Code | 8471.80.40.00 |
Country of Origin | CN (China) |
Date | Board Revision | Device Version | Comment |
---|---|---|---|
April 2011 | 0 | 903 | Product Release |
May 2011 | 0 | 904 | getLabelString fix for lables > 7 characters |
Channel Name | API | Channel |
---|---|---|
Voltage Input | VoltageInput | 0 - 7 |
Voltage Ratio Input | VoltageRatioInput | 0 - 7 |
Digital Input | DigitalInput | 0 - 7 |
Digital Output | DigitalOutput | 0 - 7 |
API | Detail | Language | OS | |
---|---|---|---|---|
VoltageInput | Visual Studio GUI | C# | Windows | Download |
VoltageInput | Multi-Channel Example | JavaScript | Browser | Download |
VoltageInput | JavaScript | Browser | Download | |
VoltageInput | Objective-C | macOS | Download | |
VoltageInput | Swift | macOS | Download | |
VoltageInput | Swift | iOS | Download | |
VoltageInput | Visual Basic .NET | Windows | Download | |
VoltageInput | Max/MSP | Multiple | Download | |
VoltageRatioInput | Visual Studio GUI | C# | Windows | Download |
VoltageRatioInput | Load Cell Calibrator | C# | Windows | Download |
VoltageRatioInput | JavaScript | Browser | Download | |
VoltageRatioInput | Objective-C | macOS | Download | |
VoltageRatioInput | Swift | macOS | Download | |
VoltageRatioInput | Swift | iOS | Download | |
VoltageRatioInput | Visual Basic .NET | Windows | Download | |
VoltageRatioInput | Max/MSP | Multiple | Download | |
DigitalInput | Visual Studio GUI | C# | Windows | Download |
DigitalInput | JavaScript | Browser | Download | |
DigitalInput | Multi-Channel Example | JavaScript | Browser | Download |
DigitalInput | Objective-C | macOS | Download | |
DigitalInput | Swift | macOS | Download | |
DigitalInput | Swift | iOS | Download | |
DigitalInput | Visual Basic .NET | Windows | Download | |
DigitalInput | Max/MSP | Multiple | Download | |
DigitalOutput | Visual Studio GUI | C# | Windows | Download |
DigitalOutput | JavaScript | Browser | Download | |
DigitalOutput | Multi-Channel Example | JavaScript | Browser | Download |
DigitalOutput | Objective-C | macOS | Download | |
DigitalOutput | Swift | macOS | Download | |
DigitalOutput | Swift | iOS | Download | |
DigitalOutput | Visual Basic .NET | Windows | Download | |
DigitalOutput | Max/MSP | Multiple | Download |
Product | Voltage Inputs | Digital Outputs | Digital Inputs | |
---|---|---|---|---|
Part Number | Price | Number of Voltage Inputs | Number of Digital Outputs | Number of Digital Inputs |
PhidgetInterfaceKit 8/8/8
|
$80.00 | 8 | 8 | 8 |
PhidgetInterfaceKit 2/2/2
|
$50.00 | 2 | 2 | 2 |
PhidgetInterfaceKit 8/8/8
|
$80.00 | 8 | 8 | 8 |
PhidgetInterfaceKit 8/8/8 Mini-Format
|
$70.00 | 8 | 8 | 8 |
PhidgetInterfaceKit 8/8/8 w/6 Port Hub
|
$110.00 | 8 | 8 | 8 |
PhidgetTextLCD 20X2 : White : Integrated PhidgetInterfaceKit 8/8/8
|
$70.00 | 8 | 8 | 8 |