Products for USB Sensing and Control

Products for USB Sensing and Control


Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
+1 403 282-7335

Light Phidget

ID: LUX1000_0

This light sensor measures from 188 μlux to 220 klux and connects to any VINT port.


Quantity Available: 465

Qty Price
5 $11.40
10 $10.80
25 $9.60
50 $8.40
100 $7.80
250 $7.20
500 $6.60
1000 $6.00

This handly little sensor measures the amount of light shining on it, making it a perfect addition to automated systems that need to switch on at night or in low-light conditions. It has a wide measurement range from 188 microlux (starlight on a moonless night) to 220,000 lux (direct sunlight). It connects to a VINT Hub port with a Phidget cable. Have a look at the "Compatible Products" tab for a list of options.

Product Specifications

Sensor Properties
Controlled By VINT
Sensor Type Light
Light Sensor
Light Level Min 188 μlx
Light Level Max (5V) 220 klx
Light Resolution 188 μlx
Sampling Interval Min 125 ms/sample
Sampling Interval Max 60 s/sample
Electrical Properties
Current Consumption Max * 500 μA
Current Consumption Min 20 μA
Physical Properties
Operating Temperature Min -15 °C
Operating Temperature Max 70 °C

* - Current consumption varies depending on selected data interval. See the technical section of the User Guide for details.

Software Objects

Channel NameAPIChannel
Light Sensor LightSensor 0


Back Forward
Print this API


Library & Driver Downloads

Code Samples

LightSensor C Multiple Download
LightSensor C# Windows Download
LightSensor Java Multiple Download
LightSensor JavaScript Any Download
LightSensor Objective-C macOS Download
LightSensor Python Multiple Download
LightSensor Visual Basic .NET Windows Download

Product History

Date Board Revision Device Version Comment
June 20170100Product Release

Getting Started

Welcome to the LUX1000 user guide! In order to get started, make sure you have the following hardware on hand:

Next, you will need to connect the pieces:

LUX1000 Functional.jpeg
  1. Connect the LUX1000 to the VINT Hub using the Phidget cable.
  2. Connect the VINT Hub to your computer with a USB cable.

Now that you have everything together, let's start using the LUX1000!

Using the LUX1000

Phidget Control Panel

In order to demonstrate the functionality of the LUX1000, the Phidget Control Panel running on a Windows machine will be used.

The Phidget Control Panel is available for use on both macOS and Windows machines. If you would like to follow along, first take a look at the getting started guide for your operating system:

Linux users can follow the getting started with Linux guide and continue reading here for more information about the LUX1000.

First Look

After plugging the LUX1000 into your computer and opening the Phidget Control Panel, you will see something like this:

LUX1000 Panel.jpg

The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.

The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Light Sensor

Double-click on the Light Sensor object, labelled Light Phidget, in order to run the example:

LightSensor Example.jpg

General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.

Technical Details

Current Consumption

Current consumption on the LUX1000 is dependent on the sampling interval you choose. More current is used for frequent samples.

LUX1000 Current.jpg

Dynamic Gain and Sampling

The LUX1000 is able to measure the intensity of light in the impressive range of 188µlx to 220klx. It's able to work in such a wide range is due to its ability to dynamically change the gain value on its measurements, in addition to changing the amount of integration time taken per measurement. Changing the gain coarsely affects the range, while changing the integration time finely affects the range
The response of the photodiodes depending on the wavelength of the incoming light.

Because of these dynamic ranges, you may see momentary saturation when trying to measure large changes in light intensity in short periods of time (for example, a strobe light). Once the light level stabilizes though, the sensor should be able to settle back into optimal range settings.

Spectral Response

The light sensor on the LUX1000 is designed to sense light in a way that emulates the response of the human eye. However, digital light sensors work very differently than our eyes do. Using the photoelectric effect, the photodiodes in the sensor will generate current when struck by incoming photons. The problem is that the range of wavelengths that these photodiodes respond to vary depending on what materials they're made of, and none of them have the same response as the human eye.

The solution offered by the chip used in the LUX1000 is to take readings from two different photodiodes; one that detects only IR light (which is invisible to the human eye) and one that detects both visible and IR light. Once it has these measurements, it weights them with coefficients based on calibration testing, and then subtracts the IR component from the diode that detects both IR and visible light. The result is a workable approximation of brightness as seen by a human eye.

What to do Next

  • Software Overview - Find your preferred programming language here to learn how to write your own code with Phidgets!
  • General Phidget Programming - Read this general guide to the various aspects of programming with Phidgets. Learn how to log data into a spreadsheet, use Phidgets over the network, and much more.
  • Phidget22 API - The API is a universal library of all functions and definitions for programming with Phidgets. Just select your language and device and it'll give you a complete list of all properties, methods, events, and enumerations that are at your disposal.


This Phidget is a smart device that must be controlled by a VINT Hub. For more information about VINT, have a look at the VINT Primer. You can use a Phidget Cable to simply and easily connect the two devices. Here's a list of all of the different VINT Hubs currently available:

Product Board
Image Part Number Price Number of VINT Ports
HUB0000_0 $30.00 6
SBC3003_0 $120.00 6

Phidget Cables

Use a Phidget cable to connect this device to the hub. You can solder multiple cables together in order to make even longer Phidget cables, but you should be aware of the effects of having long wires in your system.

Product Physical Properties
Image Part Number Price Cable Length
3002_0 $2.00 600 mm
3003_0 $1.50 100 mm
3004_0 $3.00 3.5 m
3034_0 $1.50 150 mm
3038_0 $2.25 1.2 m
3039_0 $2.75 1.8 m

Have a look at our light sensors:

Product Sensor Properties Light Sensor
Image Part Number Price Sensor Type Controlled By Light Level Min Light Level Max (5V)
1142_0 $7.00 Light Voltage Input (0-5V) 1 lx 1 klx
1143_0 $7.00 Light Voltage Input (0-5V) 3 lx 70 klx
LUX1000_0 $12.00 Light VINT 188 μlx 220 klx