Products for USB Sensing and Control
Products for USB Sensing and Control

PHIDGETS Inc.

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada
+1 403 282-7335

Spatial Phidget

ID: MOT1101_0
Recommended for new designs: This product (or a similar replacement with a compatible form, fit and function) is estimated to be available for ten years or more.

An accelerometer, gyroscope, and magnetometer all in one board. Measuring in 3 axes, it plugs right into your VINT hub.

$30.00

Quantity Available: 376

Qty Price
5 $28.50
10 $27.00
25 $24.00
50 $21.00
100 $19.50
250 $18.00
500 $16.50
1000 $15.00

Combining a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer, the Spatial Phidget is the all-in-one motion package for your VINT Hub. By analyzing data from these three devices, you can use the Spatial Phidget in a number of interesting ways. For example, you could use data from all three to track the movement and direction of a vehicle or robot. Or, you could use the accelerometer on a surface to measure nearby movement or vibration, or on a stationary object to measure tilt. The MOT1101 connects to a port on a VINT Hub. See the Connection & Compatibility tab for a list of hubs.

Other Options

The Spatial Phidget is intended for applications where the amount and direction of movement are more important than the precise numbers. If you need an added degree of precision in your project, have a look at the Other Spatials tab for more appropriate options.

VINT Hubs

This Phidget is a smart device that must be controlled by a VINT Hub. For more information about VINT, have a look at the VINT Primer. You can use a Phidget Cable to simply and easily connect the two devices. Here's a list of all of the different VINT Hubs currently available:

Product Board
Image Part Number Price Number of VINT Ports
HUB0000_0 $30.00 6
SBC3003_0 $120.00 6

Phidget Cables

Use a Phidget cable to connect this device to the hub. You can solder multiple cables together in order to make even longer Phidget cables, but you should be aware of the effects of having long wires in your system.

Product Physical Properties
Image Part Number Price Cable Length
3002_0 $2.00 600 mm
3003_0 $1.50 100 mm
3004_0 $3.00 3.5 m
3034_0 $1.50 150 mm
3038_0 $2.25 1.2 m
3039_0 $2.75 1.8 m


Getting Started

Welcome to the MOT1101 user guide! In order to get started, make sure you have the following hardware on hand:

Next, you will need to connect the pieces:

MOT1101 Functional.jpeg
  1. Connect the MOT1101 to the VINT Hub using the Phidget cable.
  2. Connect the VINT Hub to your computer with a USB cable.


Using the MOT1101

Phidget Control Panel

In order to demonstrate the functionality of the MOT1101, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines.

Windows

To open the Phidget Control Panel on Windows, find the Ph.jpg icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel

Windows PhidgetTaskbar.PNG

macOS

To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the Ph.jpg icon to bring up the Phidget Control Panel.


For more information, take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the MOT1101.

First Look

After plugging the MOT1101 into your computer and opening the Phidget Control Panel, you will see something like this:

MOT1101 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Accelerometer

Double-click on the Accelerometer object "3-Axis Accelerometer" in order to run the example:

MOT1101 Accelerometer Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • The measured values reported in g-force can be seen via labels as well as graphical dials. Try tilting the MOT1101 in different directions to see the labels and graphics change.
  • An extremely accurate timestamp is also reported with the g-force values.


Gyroscope

Double-click on the Gyroscope object in order to run the example:

MOT1101 Gyroscope Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • The Zero Gyro button is used to compensate for the drift that is inherent to all gyroscopes. The gyroscope primer has more information about this subject.
  • The measured values reported in degrees per second can be seen via labels as well as graphical dials. Try rotating the MOT1101 in different directions to see the labels and graphics change.
  • An extremely accurate timestamp is also reported with the g-force values.


Magnetometer

Double-click on the Magnetometer object in order to run the example:

MOT1101 Magnetometer Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • Use the Set Params... button to set the calibration parameters. For more information about calibration, see the technical section.
  • The measured values reported in Gauss can be seen via labels as well as a graphical diagram. The diagram can help you visualize the magnetic field vector.
  • An extremely accurate timestamp is also reported with the Gauss values.


Spatial

Double-click on the Spatial object in order to run the example:

MOT1101 Spatial Example.jpg


The Spatial example demonstrates that you can receive data from the accelerometer, gyroscope, and magnetometer all at once by using the Spatial object rather than the other three objects individually.

Finding The Addressing Information

Before you can access the device in your own code, and from our examples, you'll need to take note of the addressing parameters for your Phidget. These will indicate how the Phidget is physically connected to your application. For simplicity, these parameters can be found by clicking the button at the top of the Control Panel example for that Phidget.

The locate Phidget button is found in the device information box

In the Addressing Information window, the section above the line displays information you will need to connect to your Phidget from any application. In particular, note the Channel Class field as this will be the API you will need to use with your Phidget, and the type of example you should use to get started with it. The section below the line provides information about the network the Phidget is connected on if it is attached remotely. Keep track of these parameters moving forward, as you will need them once you start running our examples or your own code.

All the information you need to address your Phidget

Using Your Own Program

You are now ready to start writing your own code for the device. The best way to do that is to start from our examples:

This Phidget is compatible with the following examples:


Once you have your example, you will need to follow the instructions on the page for your programming language to get it running. To find these instructions, select your programming language from the Software Overview page.

Technical Details

Compass Calibration

Magnetic Error Correction (Calibration)

In order to get numbers of useful accuracy from the MOT1101's compass you will need to provide calibration parameters. To make determining them easy, we distribute a program with our drivers that does this for you.

To calibrate your compass:

Calibration1.png
  • Navigate to the Phidgets installation folder on your computer. Open the 'examples' folder and find the Compass Calibrator program.


Calibration2.png


Calibration3.png
  • Select your country and city. Click 'Get Location' and then 'Compute'. A table of values will show up in an overlaid window. The value you will need is the 'Total Field' value in nT.


Calibration4.png
  • Enter the magnetic field value into the calibration program. Note that it wants the field strength in Gauss, not nT like the website gives you. 1T = 10000 Gauss so you can divide by 1x10^5 to convert to Gauss.
  • Depending on what your application is this step as well as the next step might be a bit different. If you are intending on mounting the MOT1101 onto a large vehicle such as a car then you should mount the 1056 securely to the vehicle in its final intended position then check the 2-axis bubble, click the 'Start' button.
  • If you are using a smaller, more easily handled vehicle such as a small robot (something you could physically pick up) you will mount the MOT1101 and use the 3-axis calibration instead. Click 'Start'.


Calibration5.png
  • Rotate the compass around (including whatever equipment you have mounted it to) such that the red dots being generated on screen outline as much of a full sphere (in 3-axis) as possible. This will take several minutes. Being perfect is not necessary but try to be as thorough as time permits. Once done, click stop.
  • If you are in a large vehicle, you will be aiming to fill out a disc instead of a sphere. This can be done by simply driving around for a few minutes making sure to do complete turns in the process.


Calibration6.png
  • Take the parameters displayed in the text box and use them for your compass. For example in C#:

 
     setCompassCorrectionParameters(0.51075, 0.18820, -0.07456, -0.02209, 1.87163, 1.87640, 2.12565, -0.04000, -0.04084, -0.03552, 0.09073, -0.04258, 0.11056);


Current Consumption

The current consumption of this device depends on what the data interval is set to.

Sptcurrent.jpg

Gyroscope Resolution

Due to the way the gyroscope chip on the MOT1101 switches internal gain values to measure a wide range of angular rates, the resolution varies depending on the angular rate currently being measured.

Angular Rate (°/s) Resolution (°/s)
0 - 250 0.00875
251 - 500 0.0175
501 - 2000 0.07

Further Reading

For more information on how to use the data from the objects on the Spatial Phidget, refer to the appropriate primer:

What to do Next

  • Software Overview - Find your preferred programming language here and learn how to write your own code with Phidgets!
  • Phidget22 API - The API is a universal library of all functions and definitions for programming with Phidgets. Just select your language and device and it'll give you a complete list of all properties, methods, events, and enumerations that are at your disposal.

Product Specifications

Board Properties
Controlled By VINT
Accelerometer
Acceleration Measurement Max ± 8 g
Acceleration Measurement Resolution 1 mg
Accelerometer Noise ± 5 mg
Sampling Interval Max 60 s/sample
Sampling Interval Min 20 ms/sample
Gyroscope
Gyroscope Speed Max ± 2000°/s
Gyroscope Resolution * 0.07°/s
Gyroscope Noise ± 0.5°/s
Sampling Interval Max 60 s/sample
Sampling Interval Min 20 ms/sample
Magnetometer
Magnetic Field Max ± 8 G
Magnetometer Resolution 300 μG
Magnetometer Noise ± 7.5 mG
Sampling Interval Max 60 s/sample
Sampling Interval Min 20 ms/sample
Electrical Properties
Current Consumption Max ** 11.5 mA
Current Consumption Min 155 μA
Physical Properties
Operating Temperature Min -30 °C
Operating Temperature Max 85 °C

* - Gyroscope resolution varies with angular rate. See the technical section of the User Guide for details.

** - Current consumption varies depending on selected data rate. See the technical section of the User Guide for details.

Software Objects

Channel NameAPIChannel
3-Axis Accelerometer Accelerometer 0
3-Axis Gyroscope Gyroscope 0
3-Axis Magnetometer Magnetometer 0
Spatial Spatial 0

API


Back Forward
Print this API

Documents

Library & Driver Downloads

Code Samples

Language:

APIDetailLanguageOS
Accelerometer C Multiple Download
Accelerometer C# Windows Download
Accelerometer Java Multiple Download
Accelerometer Java Android Download
Accelerometer JavaScript Nodejs Download
Accelerometer JavaScript Browser Download
Accelerometer Objective-C macOS Download
Accelerometer Swift macOS Download
Accelerometer Swift iOS Download
Accelerometer Python Multiple Download
Accelerometer Visual Basic .NET Windows Download
Accelerometer Max/MSP Multiple Download
Gyroscope C Multiple Download
Gyroscope C# Windows Download
Gyroscope Java Multiple Download
Gyroscope Java Android Download
Gyroscope JavaScript Nodejs Download
Gyroscope JavaScript Browser Download
Gyroscope Objective-C macOS Download
Gyroscope Swift macOS Download
Gyroscope Swift iOS Download
Gyroscope Python Multiple Download
Gyroscope Visual Basic .NET Windows Download
Gyroscope Max/MSP Multiple Download
Magnetometer C Multiple Download
Magnetometer C# Windows Download
Magnetometer Java Multiple Download
Magnetometer Java Android Download
Magnetometer JavaScript Nodejs Download
Magnetometer JavaScript Browser Download
Magnetometer Objective-C macOS Download
Magnetometer Swift macOS Download
Magnetometer Swift iOS Download
Magnetometer Python Multiple Download
Magnetometer Visual Basic .NET Windows Download
Magnetometer Max/MSP Multiple Download
Spatial Compass Calibrator C Multiple Download
Spatial C Multiple Download
Spatial C# Windows Download
Spatial Compass Calibrator C# Windows Download
Spatial Java Multiple Download
Spatial Java Android Download
Spatial JavaScript Nodejs Download
Spatial JavaScript Browser Download
Spatial Objective-C macOS Download
Spatial Swift macOS Download
Spatial Swift iOS Download
Spatial Python Multiple Download
Spatial Visual Basic .NET Windows Download
Spatial Max/MSP Multiple Download

Product History

Date Board Revision Device Version Comment
January 20180112Product Release
January 20180113Fixed issue occurring when DataInterval is set before Enable

Have a look at our spatial boards:

Product Accelerometer Gyroscope Magnetometer
Image Part Number Price Acceleration Measurement Max Acceleration Measurement Resolution Gyroscope Speed Max Gyroscope Resolution Magnetometer Resolution Magnetic Field Max
1041_0B $40.00 ± 8 g 976.7 μg
1042_0B $70.00 ± 8 g 976.7 μg ± 2000°/s 0.07°/s 3 mG 5.5 G
1043_0B $80.00 ± 2 g 76.3 μg
1044_0B $140.00 ± 2 g 76.3 μg 3 mG 5.5 G
MOT1100_0 $20.00 ± 8 g 1 mg
MOT1101_0 $30.00 ± 8 g 1 mg ± 2000°/s * 0.07°/s 300 μG ± 8 G