Products for USB Sensing and Control

Products for USB Sensing and Control

PhidgetEncoder HighSpeed

ID: 1057_0
Read one encoder at speeds of up to 500,000 quadrature cycles per second. Connects directly to USB.

Replaced by 1057_2

Replaced by the 1057 - PhidgetEncoderHighSpeed.

The PhidgetEncoder HighSpeed has been designed to work with a wide assortment of optical encoders. It can handle up to 500,000 counts per second and can be connected to any incremental quadrature encoder.

Product History

Date Board Revision Device Version Comment
January 2005 0300Product Release
April 2007 0301Added index channel
November 20091302Increased pull-up resistance from 1kO to 2.2kO
January 2010 2302Replaced USB connector with Mini-USB connector, made board slightly smaller.

Getting Started

Welcome to the 1057 user guide! In order to get started, make sure you have the following hardware on hand:


Next, you will need to connect the pieces:

1057 2 Connecting The Hardware.jpg
  1. Connect the encoder to the PhidgetEncoder's input.
  2. Connect the PhidgetEncoder to your computer using the USB cable.


Now that you have everything together, let's start using the 1057!


Using the 1057

Phidget Control Panel

In order to demonstrate the functionality of the 1057, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines. If you would like to follow along, first take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1057.

First Look

After plugging the 1057 into your computer and opening the Phidget Control Panel, you will see something like this:

1057 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Encoder

Double-click on the Encoder object, labelled PhidgetEncoder HighSpeed, in order to run the example:

1057 Encoder Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Position Change: the number of ticks (or quadrature cycles) that have occurred since the last change event.
  • Time Change: the amount of time in milliseconds that has elapsed since the last change event.
  • Position: the total position in ticks relative to where the encoder was when the window was opened.
  • Index Position: the position where the index channel was last encountered. Some encoders do not support index, check your encoder's datasheet for more information.
  • Velocity: the average velocity in rotations per second. A CPR must be specified to enable this functionality.
  • Specify a counts per revolution (CPR) value to enable velocity calculation.

Technical Details

General

The 1057 can be used with a wide assortment of mechanical and optical encoders. The encoder should be of quadrature output type, indicating that there will be two output channels (usually labeled A and B). Specifically, the 1057 reads a standard incremental non-differential TTL encoder.


The maximum rate of the 1057 is specified at 500,000 cycles per second. In your application, this number relates directly to the number of revolutions per second you wish to measure, and the number of counts per revolution specified for your encoder. If your encoder's wheel has 1000 counts per revolution, then the limit on measurable revolutions per second is 500, or 30,000rpm (which, for the 1057, corresponds to 2000 position changes in software per second).

Choosing Encoders

Both mechanical and optical encoders are available, with optical encoders prevailing in quality at higher revolution speeds. Review the data sheet for the encoder that your are selecting carefully before purchasing it to ensure it is compatible with the 1057. Almost any incremental quadrature encoder will work but it is important to verify this before connecting it. Absolute encoders will not work with this device. Warning: The 1057 incorporates a 1kOhm pull-up resistor on each line from the encoder input connector. Some encoders will not be able to sink enough current to reliably signal to the 1057. They may work initially, or not at all.

We have reviewed the following encoders, and found that they can be used with the 1057. This is not meant to be a comprehensive list but should be used as a comparison with other encoders.


Manufacturer Web Page Part Number
Grayhill www.Grayhill.com Series 63R, Series 61R Series 63Q TTL Output
US Digital (Recommended) www.USDigital.com S4, S5, E2, E3, E4, E4P, etc.
Avago Technologies (Formerly Agilent) www.avagotech.com HEDS 5500
CUI Inc. www.cui.com AMT103-V


Connectors

The encoder input on the 1057 uses a 5-pin, 0.100 inch pitch locking connector. The connectors are commonly available - refer to the Table below for manufacturer part numbers.


Manufacturer Part Number Description
Molex 50-57-9405 5 Position Cable Connector
Molex 16-02-0102 Wire Crimp Insert for Cable Connector
Molex 70543-0004 5 Position Vertical PCB Connector
Molex 70553-0004 5 Position Right-Angle PCB Connector (Gold)
Molex 70553-0039 5 Position Right-Angle PCB Connector (Tin)
Molex 15-91-2055 5 Position Right-Angle PCB Connector - Surface Mount


Note: Most of the above components can be bought at Digikey.

Connector Pinout Diagram

1057 2 Functional.jpg


Further Reading

If you want to know more about encoders, check out the Encoder Primer.

What to do Next

  • Software Overview - Find your preferred programming language here to learn how to write your own code with Phidgets!
  • General Phidget Programming - Read this general guide to the various aspects of programming with Phidgets. Learn how to log data into a spreadsheet, use Phidgets over the network, and much more.
  • Phidget22 API - The API is a universal library of all functions and definitions for programming with Phidgets. Just select your language and device and it'll give you a complete list of all properties, methods, events, and enumerations that are at your disposal.

Software Objects

Channel NameAPIChannel
Encoder Input Encoder 0

API


Back Forward
Print this API