1011 User Guide

From Phidgets Support
Jump to: navigation, search

Getting Started

Welcome to the 1011 user guide! In order to get started, make sure you have the following hardware on hand:


Next, you will need to connect the pieces:

1011 0 Connecting The Hardware.jpg
  1. Connect the 12-Wire Custom Cable to the 1011
  2. Connect any/all test hardware to the 1011. View the technical section for help.
  3. Connect the 1010 to the computer.


Now that you have everything together, let's start using the 1011!

Using the 1011

Phidget Control Panel

In order to demonstrate the functionality of the 1011, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines. If you would like to follow along, first take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1011.

First Look

After plugging the 1011 into your computer and opening the Phidget Control Panel, you will see something like this:

1011 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Voltage Input

Double-click on a Voltage Input object in order to run the example:

1011 VoltageInputSensor Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


Voltage Ratio Input

Double-click on a Voltage Ratio Input object in order to run the example:

1011 VoltageRatioSensor Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • The voltage ratio is reported in Volts per Volt. For example, if the Phidget is providing 5V and the sensor is sending back 2.5V, the ratio will be 0.5V/V.
  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • If you have an analog sensor connected that you bought from us, you can select it from the Sensor Type drop-down menu. The example will then convert the voltage into a more meaningful value based on your sensor, with units included, and display it beside the Sensor Value label. Converting voltage to a Sensor Value is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


Digital Input

Double-click on a Digital Input object in order to run the example:

1011 DigitalInput Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • This is an active-low device, therefore, it will be true when connected to ground, and false when connected to a high voltage.

Digital Output

Double-click on a Digital Output object in order to run the example:

1011 DigitalOutput Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Toggle the state of the digital output by pressing the button.

Technical Details

1011 0 Connector Diagram.jpg


Replacing the I/O Interface Cable

If your I/O interface cable gets damaged, you can remove it and replace it with PhidgetInterfaceKit 2/2/2 replacement cable. Pull hard on the connector until it comes out.

  • Note: the cable is designed to be permanently attached to the 1011. We strongly recommend that you limit the number of times you remove the assembly from the 1011.


These connectors are also commonly available. Their part numbers are listed below:

Manufacturer Part Number Description
Hirose Electric DF11-12DP-2DS(24) 2mm Double-Row Connector (Right Angle Pin Header)
Hirose Electric DF11-12DS-2C 2mm Double-Row Connector (Crimping Socket)

For part numbers on the analog sensor cables, see the mechanical section of the Analog Input Primer.

Further Reading

If you want to know more about the input/output capabilities of the 1011 InterfaceKit, check the Digital Input Primer, InterfaceKit Digital Outputs page, and the Analog Input Primer.


What to do Next

  • Software Overview - Find your preferred programming language here to learn how to write your own code with Phidgets!
  • General Phidget Programming - Read this general guide to the various aspects of programming with Phidgets. Learn how to log data into a spreadsheet, use Phidgets over the network, and much more.
  • Phidget22 API - The API is a universal library of all functions and definitions for programming with Phidgets. Just select your language and device and it'll give you a complete list of all properties, methods, events, and enumerations that are at your disposal.