Language - Swift: Difference between revisions

From Phidgets Support
mNo edit summary
No edit summary
(17 intermediate revisions by 3 users not shown)
Line 1: Line 1:
== Quick Downloads ==
[[Category:Language]]
__NOTOC__


Already know what you're doing? Here you go:
We provide support for the Swift language on macOS. We also provide instructions on how to get your project started in Xcode for use in macOS and iOS applications. Select your operating system below, and follow the instructions to get your project running with Phidgets.


=== Documentation ===
General information of how to use Phidgets with Swift can be found in the '''Write Code''' section of each development environment page. This information is consistent across all pages.


*{{Phidget22API}}
==Choose Your Development Environment:==


=== Example Code ===
{{Language_-_Swift_Dev_Environment_Table}}


*{{SampleCode|Swift|Swift Examples}}
== Quick Downloads ==


=== Libraries ===
If you already know what you're doing and just need the files, you can find them all below.


{{MacQuickDownloads}}
=== Documentation ===
{{iOSQuickDownloads}}


== Getting Started with Swift ==
*{{Phidget22API}} (select Swift from the drop-down menu)
Welcome to using Phidgets with Swift! By using Swift, you will have access to the complete {{Phidget22API}}, including events. We also provide example code in Swift for multiple Phidget classes.


== iOS ==
=== Example Code ===
{{IOS_Languages}}
===Xcode===
====Use our examples====
One of the best ways to start programming with Phidgets is to use our example code as a guide. In order to run the examples for iOS you will need to download [https://developer.apple.com/xcode/ Xcode] from the Mac App Store.


*{{SampleCode|Swift|Swift Examples}}


Now that you have Xcode installed, download the Swift example:
===Libraries===
*{{SampleCode|Swift|Swift Example}}
 
 
You have previously downloaded the Phidget iOS libraries on the iOS page, but here they are again, just in case:
*[{{SERVER}}/downloads/phidget22/libraries/ios/Phidget22_iOS.zip Phidget iOS Libraries]
 
 
Next, unpack the Swift example and navigate to ''Phidget.xcodeproj''. Open the file in Xcode:
[[Image:Swift_open.png|link=|center]]
 
 
{{IOS_use_our_examples}}
 
====Configure your project====
Whether you are  building a project from scratch, or adding Phidget functionality to an existing project, you will need to configure your development environment to properly link the Phidget libraries. To begin:
 
Create a new Xcode project:
[[Image:Cocoa_CreateProject.png |link=|center]]
 
 
Next, select an iOS application. For this tutorial's purposes, we will use a Single View Application:
[[Image:iOS_SingleView.png |link=|center]]
 
 
Name the project, select Swift as the language, and choose which devices will be supported:
[[Image:iOS_NameProject_Swift.png|link=|center]]
 
 
Now that your project is created, you need to add references to the Phidget iOS libraries. This is covered in detail above in the [[#Use our examples |use our examples]] section.
 
After you have linked the Phidget iOS libraries, simply add a reference to phidget22.h in your bridging header file:
<syntaxhighlight lang="objc">
#import "phidget22.h"
</syntaxhighlight>
 
 
Success! The project now has access to Phidgets and we are ready to begin coding.
 
==Write Code==
By following the instructions for your operating system and compiler above, you probably now have a working example and want to understand it better so you can change it to do what you want. This teaching section has resources for you to learn from the examples and write your own.
Your main reference for writing Objective-C code will be the {{Phidget22API}} Manual:
 
The following code snippets describe how to do various general tasks with Phidgets. You should be able to find places in the examples where these snippets exist, and modify them to suit your requirements. Remember: your main reference for writing Objective-C code will be the {{Phidget22API}} Manual and the example code.
 
==== Step One: Initialize and Open ====
You will need to declare your Phidget variable in your code. For example, we can declare a Phidget Digital Output like this:
 
<syntaxhighlight lang="swift">
var ch:PhidgetDigitalInput? = nil
</syntaxhighlight>
 
The object name for any Phidget is listed in the {{Phidget22API}} manual. Every type of Phidget also inherits functionality from the Phidget base class.
 
Next, the Phidget object needs to be initialized and opened.
 
<syntaxhighlight lang="swift">
PhidgetDigitalInput_create(&ch)
Phidget_open(ch)
</syntaxhighlight>
 
==== Step Two: Wait for Attachment (plugging in) of the Phidget ====
Simply calling open does not guarantee you can use the Phidget immediately. To use a Phidget, it must be plugged in (attached). We can handle this by using event driven programming and tracking the attach events and detach events. Alternatively, we can call the following function:
 
<syntaxhighlight lang="swift">
Phidget_openWaitForAttachment(ch, 5000) //wait for attach for 5 seconds, if not time out
</syntaxhighlight>
 
Waiting for attachment will block indefinitely until a connection is made, or until the timeout value is exceeded.
 
To use events to handle attachments, we need to first declare the function that will be called when an attach event is fired - in this case we will call the function gotAttach.
 
<syntaxhighlight lang="swift">
let gotAttach: @convention(c)(PhidgetHandle?, UnsafeMutableRawPointer?) -> () = {phid,context in
    DispatchQueue.main.async(execute: {
        let myObject = Unmanaged<YourViewController>.fromOpaque(context!).takeUnretainedValue()
        myObject.onAttachHandler()
    })
}
</syntaxhighlight>
 
Next, we have to modify our create/open code to emulate the following:
 
<syntaxhighlight lang="swift">
PhidgetDigitalInput_create(&ch)
Phidget_setOnAttachHandler(ch,gotAttach,bridge(self))
Phidget_open(ch)
</syntaxhighlight>
 
The bridge function mentioned above is described here:
 
<syntaxhighlight lang="swift">
func bridge<T : AnyObject>(_ obj : T) -> UnsafeMutableRawPointer {
    return Unmanaged.passUnretained(obj).toOpaque()
}
</syntaxhighlight>
 
==== Step Three: Do Things with the Phidget ====
We recommend the use of event driven programming when working with Phidgets. In a similar way to handling an attach event as described above, we can add an event handler with the following code:
 
<syntaxhighlight lang="swift">
PhidgetDigitalInput_setOnStateChangeHandler(ch, gotStateChange, bridge(self))
</syntaxhighlight>
 
This code will connect a function and an event. In this case, the gotStateChange function will be called when there has been a change to the devices input. Next, we need to create the gotStateChange function.
 
<syntaxhighlight lang="swift">
let gotStateChange: @convention(c)(PhidgetDigitalInputHandle?, UnsafeMutableRawPointer?, CInt) -> () = {_,context,cState in
    var state:Int32 = cState
    DispatchQueue.main.async(execute: {
        let myObject = Unmanaged<YourViewController>.fromOpaque(context!).takeUnretainedValue()
        myObject.onStateChangeHandler(state)
    })
}
</syntaxhighlight>
 
Above, the onStateChangeHandler method is invoked on the main thread. Event data is stored as an Int32.
 
The method onStateChangeHandler is defined as follows:
 
<syntaxhighlight lang="swift">
func onStateChangeHandler(_ state:Int32){
    if  state == 0{
        stateLabel.text = "False"
    }
    else{
        stateLabel.text = "True"
    }
}
</syntaxhighlight>
 
The example shown above simply changes the text of a UITextField to display whether the input is true or false.
 
Some events such as the attach or detach events belong to the base Phidget object and are thus common to all Phidgets. Please refer to the {{Phidget22API}} manual and the Swift examples for a list of events and their usage.
 
If events do not suit your needs, you can also poll the device directly for data using code like this:
 
<syntaxhighlight lang="swift">
var state = 0
PhidgetDigitalOutput_getState(ch, &state)
stateLabel.text = state ? "True" : "False"
</syntaxhighlight>
 
Polling code can be used inside a polling loop as an alternative to event driven programming.
 
==== Step Four: Close and Delete ====
At the end of your program, don't forget to close your device.
 
<syntaxhighlight lang="swift">
Phidget_close(ch)
PhidgetDigitalInput_delete(&digin)
</syntaxhighlight>
 
== Further Reading ==
 
[[Phidget Programming Basics]] - Here you can find the basic concepts to help you get started with making your own programs that use Phidgets.
 
[[Data Interval/Change Trigger]] - Learn about these two properties that control how much data comes in from your sensors.
 
[[Using Multiple Phidgets]] - It can be difficult to figure out how to use more than one Phidget in your program. This page will guide you through the steps.
 
[[Polling vs. Events]] - Your program can gather data in either a polling-driven or event-driven manner. Learn the difference to determine which is best for your application.
 
[[Logging, Exceptions, and Errors]] - Learn about all the tools you can use to debug your program.


[[Phidget Network Server]] - Phidgets can be controlled and communicated with over your network- either wirelessly or over ethernet.
{{AllQuickDownloads}}

Revision as of 19:21, 13 December 2018


We provide support for the Swift language on macOS. We also provide instructions on how to get your project started in Xcode for use in macOS and iOS applications. Select your operating system below, and follow the instructions to get your project running with Phidgets.

General information of how to use Phidgets with Swift can be found in the Write Code section of each development environment page. This information is consistent across all pages.

Choose Your Development Environment:

Swift Development Environments
OS - macOS macOS

SW XCODE MAC.png SW XCODE MAC on.png

OS - iOS iOS

SW XCODE IOS.png SW XCODE IOS on.png

Quick Downloads

If you already know what you're doing and just need the files, you can find them all below.

Documentation

Example Code

Libraries