Products for USB Sensing and Control Canada flag
Products for USB Sensing and Control

sales inquiries

quotes, distributor information, purchase orders
sales@phidgets.com

technical inquiries

support, advice, warranty, returns, misshipment
support@phidgets.com

website inquiries

corrections or suggestions
web@phidgets.com

Address

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada

PHIDGETS Inc.

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada
+1 403 282-7335

PhidgetTemperatureSensor IR

ID: 1045_1B

Measure the temperature of an object from a distance with this IR temperature sensor. Plugs directly into a USB port.

$70.00

Quantity Available: 199

Qty Price
5 $66.50
10 $63.00
25 $56.00
50 $49.00
100 $45.50
250 $42.00
500 $38.50
1000 $35.00
50+...

Note: The 1045_1B is identical to the 1045_1, except that you have the option of whether you want to include the USB cable.

The 1045 is an intelligent non-contact temperature sensor with a 10° field of view and a USB interface for easy connection to your computer. It takes an average of the temperature of objects placed within its cone of detection. It's especially useful for applications where you need to measure the surface temperature of an object without making direct contact, or for detecting the presence of humans or animals.

Features

  • Measure the surface temperature of objects between -70°C to 380°C
  • Works at a distance, reporting the average temperature of objects within its 10-degree view
  • Get new temperature data every 32ms
  • Plugs into your computer directly via USB

Comes Packaged with

Hardware

  • Hardware mounting kit:
  • 4x M3 Bolts (2cm Length)
  • 4x Plastic spacers (5mm Length)
  • 4x M3 Nuts

Enclosures

You can protect your board from dust and debris by purchasing an enclosure. An enclosure will also prevent unintentional shorts caused by objects touching the pins on the bottom of the board or any terminal screws.

Product Physical Properties
Part Number Price Material
3807_1
Acrylic Enclosure for the 1045
$7.00 Clear Acrylic

USB Cables

Use a USB cable to connect this Phidget to your computer. We have a number of different lengths available, although the maximum length of a USB cable is 5 meters due to limitations in the timing protocol. For longer distances, we recommend that you use a Single Board Computer to control the Phidget remotely.

Product Physical Properties
Part Number Price Connector A Connector B Cable Length
3017_1
Mini-USB Cable 28cm 24AWG
$3.00 USB Type A USB Mini-B 280 mm
3018_0
Mini-USB Cable 180cm 24AWG
$4.00 USB Type A USB Mini-B 1.8 m
3020_0
Mini-USB Cable 450cm 20AWG
$12.00 USB Type A USB Mini-B 4.5 m
3036_0
Mini-USB Cable 60cm 24AWG
$3.50 USB Type A USB Mini-B 600 mm
3037_0
Mini-USB Cable 120cm 24AWG
$4.00 USB Type A USB Mini-B 1.2 m
CBL4011_0
Mini-USB Cable 28cm Right Angle
$3.50 USB Type A USB Mini-B (90 degree) 280 mm
CBL4012_0
Mini-USB Cable 83cm Right Angle
$4.50 USB Type A USB Mini-B (90 degree) 830 mm
CBL4020_0
USB-C to Mini USB Cable 60cm
$5.00 USB Type C USB Mini-B 600 mm
CBL4021_0
USB-C to Mini USB Cable 180cm
$6.00 USB Type C USB Mini-B 1.8 m


Getting Started

Welcome to the 1045 user guide! In order to get started, make sure you have the following hardware on hand:


Next, you will need to connect the pieces:

1045 0 Connecting The Hardware.jpg
  1. Connect the PhidgetTemperatureSensor IR to your computer using the USB cable.


Now that you have everything together, let's start using the 1045!

Using the 1045

Phidget Control Panel

In order to demonstrate the functionality of the 1045, the Phidget Control Panel running on a Windows machine will be used.


The Phidget Control Panel is available for use on both macOS and Windows machines.

Windows

To open the Phidget Control Panel on Windows, find the Ph.jpg icon in the taskbar. If it is not there, open up the start menu and search for Phidget Control Panel

Windows PhidgetTaskbar.PNG

macOS

To open the Phidget Control Panel on macOS, open Finder and navigate to the Phidget Control Panel in the Applications list. Double click on the Ph.jpg icon to bring up the Phidget Control Panel.


For more information, take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1045.

First Look

After plugging the 1045 into your computer and opening the Phidget Control Panel, you will see something like this:

1045 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

TemperatureSensor (IR)

Double-click on the Temperature Sensor object, labelled Temperature Sensor (IR), in order to run the example:

1045 TemperatureSensorIR Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • The measured temperature can be seen next to the Temperature label. Point the IR aperature towards a warm object to see the temperature quickly rise.


Temperature Sensor (IC)

Double-click on the Temperature Sensor object , labelled Temperature Sensor (IC), in order to run the example:

1045 TemperatureSensorIC Example.jpg


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • The measured temperature can be seen next to the Temperature label. Cover the board with your hands to see the temperature quickly rise.


Finding The Addressing Information

Before you can access the device in your own code, and from our examples, you'll need to take note of the addressing parameters for your Phidget. These will indicate how the Phidget is physically connected to your application. For simplicity, these parameters can be found by clicking the button at the top of the Control Panel example for that Phidget.

The locate Phidget button is found in the device information box

In the Addressing Information window, the section above the line displays information you will need to connect to your Phidget from any application. In particular, note the Channel Class field as this will be the API you will need to use with your Phidget, and the type of example you should use to get started with it. The section below the line provides information about the network the Phidget is connected on if it is attached remotely. Keep track of these parameters moving forward, as you will need them once you start running our examples or your own code.

All the information you need to address your Phidget

Using Your Own Program

You are now ready to start writing your own code for the device. The best way to do that is to start from our Code Samples.

Select your programming language of choice from the drop-down list to get an example for your device. You can use the options provided to further customize the example to best suit your needs.

Code Sample Choose Language.png


Once you have your example, you will need to follow the instructions on the page for your programming language to get it running. To find these instructions, select your programming language from the Programming Languages page.

Technical Details

Measured Temperatures

The 1045 is factory calibrated in wide temperature ranges: -40°C to 125°C for the ambient temperature and -70°C to 382.2°C for the object temperature.

To get an accurate reading, it is important that the object being measured occupies the sensor's full field of view of the sensor while not making physical contact with the sensor. Since an infrared sensor measures temperature based on what the object is emitting, there is theoretically no limit to the range of such a sensor, except that the further away from the sensor the object is, the larger the area of detection is. If the object being measured doesn't occupy the full area, the emissions of other objects could reduce the accuracy of the reading. In addition, the temperature of the object and of the environment also affect the overall accuracy. The highest degree of accuracy is ±0.5°C when both the ambient temperature and the object temperature are between 0°C and 50°C. As either temperature changes, the accuracy can decrease to up to ±4°C.

The measured value is the average temperature of all objects in the sensor's 10° field of view.

Board Temperature

It is very important to understand that the specifications are only guaranteed and achievable when the sensor is in thermal equilibrium and under isothermal conditions (i.e. there are no temperature differences across the sensor package board). The accuracy of the 1045 can be influenced by temperature differences in the board. These differences can be caused by the following:

  • hot electronics behind the sensor.
  • heaters/coolers behind or beside the sensor.
  • hot/cold objects very close to the sensor that not only heat the sensing element in the 1045 but also the 1045 PCB.

The 1045 assumes that the ambient temperature has settled to a constant temperature. If the surrounding temperature is constantly changing, or if there is a difference of temperature across the sensor package, additional infrared radiation will be sensed which can result in temperature errors outside of the calibrated errors.

Emissivity

In order to measure temperature using infrared radiation, it is absolutely essential to know the emissivity of the surface being measured. Emissivity is a measure of how effective a surface is at radiating energy. An emissivity of 1 is the most effective radiator - for a given temperature, it will radiate the most heat. The 1045 assumes that the surface being measured has an emissivity of 1. If the 1045 is used to measure a surface with an emissivity of 0.5, the measured temperature will be 50% of the difference in temperature between the board and object.

A few examples of some materials with a large difference in emissivity are aluminum, with a typical value of 0.18, and plastics, which can have a value ranging from 0.85 to 0.95. The visible colour of the object does not necessarily mean it has a higher emissivity value. A heavily oxidized aluminum object has an emissivity value of around 0.3, even though it looks very dark. The closer the value is to 1, the better the object is at emitting radiation.

The 1045 is calibrated for an object emissivity of 1.

For an arbitrary emissivity, the measured temperature can be converted to the surface temperature using this formula:

Surface Temperature = (Sensor Temperature - Ambient Temperature) * Emissivity + Ambient Temperature

A good resource of emissivity values of different materials can be found on here.

Emissivity is a complicated topic, as it can vary depending on the temperature of the material. For precise measurements, you may have to calculate the emissivity of your material by comparing the reported Sensor Temperature to the actual surface temperature measured with a contact thermocouple.

IR measurements are true surface temperature measurements. For example, when measuring the temperature of a person, the actual temperature measured by an IR thermometer will be temperature of the clothing and not the skin temperature. Emissivity of the clothes is another issue that has to be considered.

Sunlight Immunity

The Temperature Sensor also contains a built-in optical filter to cut off the visible spectra and increase immunity against errors introduced by any surrounding light sources.

The wavelength pass band of this optical filter is from 5.5μm to 14μm.

Maximum effective distance

In order to determine the maximum distance the 1045 can be effective at we first need to understand how the sensor measures temperature. The 1045 takes in IR radiation in a conical pattern from directly in front of the black canister mounted on the board. The field of view (FOV) of the device is rated at 10°, to illustrate:

1045 FOV.png

The 1045 measures temperature by averaging the temperature of all points inside it's FOV. This means that if the surface you are trying to measure the temperature of doesn't occupy the entire FOV, the average will be thrown off by the temperature of the surrounding surfaces. Ideally then the surface you are measuring should be close enough to cover the entire 10° arc:

1045 FOV Occupancy.png

This means that the theoretical maximum distance you can get accurate readings from is the distance at which a circle that is the base of a 10° cone has a radius equal to the surface being measured:

1045 equation.png

Note that this means that you can measure the temperature of objects from any distance provided the object is of sufficient size. This is a bit counter-intuitive but true. You could measure the temperature of the sun from 7.9 million kilometers away though the data would admittedly be about 26 seconds old.


What to do Next

  • Programming Languages - Find your preferred programming language here and learn how to write your own code with Phidgets!
  • Phidget Programming Basics - Once you have set up Phidgets to work with your programming environment, we recommend you read our page on to learn the fundamentals of programming with Phidgets.


Product Specifications

Board Properties
Controlled By USB (Mini-USB)
API Object Name TemperatureSensor
Sensor Properties
API Object Name TemperatureSensor
Sensor Type Temperature (Infrared)
Temperature Sensor
Field of View 10°
Temperature Error Typical (At 25°C) ± 0.5 °C
Ambient Temperature Min 0 °C
Ambient Temperature Max 70 °C
Ambient Temperature Resolution 0.02 °C
Ambient Temperature Error Max ± 4 °C
Object Temperature Min -70 °C
Object Temperature Max 380 °C
Object Temperature Resolution 0.02 °C
Object Temperature Error Max ± 4 °C
Update Rate 31.3 samples/s
Assumed Object Emissivity 1
Electrical Properties
Current Consumption Max 27 mA
USB Voltage Min 4.8 V DC
USB Voltage Max 5.3 V DC
USB Speed Full Speed
Physical Properties
Operating Temperature Min 0 °C
Operating Temperature Max 70 °C
Customs Information
Canadian HS Export Code 8471.80.00
American HTS Import Code 8471.80.40.00
Country of Origin CN (China)

Documents

Product History

Date Board Revision Device Version Packaging Revision Comment
February 2011 0100Product Release
May 2011 0101getLabelString fix for lables > 7 characters
September 20121101ICs put on reverse side to reduce error from self-heating
January 20181101BRemoved USB cable from packaging

Software Objects

Channel NameAPIChannel
Temperature Sensor (IR) TemperatureSensor 0
Temperature Sensor (IC) TemperatureSensor 1

API


Back Forward
Print this API

Code Samples



Example Options


Downloads

				Make your selections to display sample code.
					

Code Samples

Language:

APIDetailLanguageOS
TemperatureSensor Visual Studio GUI C# Windows Download
TemperatureSensor JavaScript Browser Download
TemperatureSensor Objective-C macOS Download
TemperatureSensor Swift macOS Download
TemperatureSensor Swift iOS Download
TemperatureSensor Visual Basic .NET Windows Download
TemperatureSensor Max/MSP Multiple Download