Products for USB Sensing and Control Canada flag
Products for USB Sensing and Control

sales inquiries

quotes, distributor information, purchase orders
sales@phidgets.com

technical inquiries

support, advice, warranty, returns, misshipment
support@phidgets.com

website inquiries

corrections or suggestions
web@phidgets.com

Address

Unit 1 - 6115 4 St SE
Calgary AB  T2H 2H9
Canada

Sound Sensor

ID: 1133_0

Measures sound pressure level between 50dB to 100 dB. Connects to an Analog Input or VINT Hub port.

Replaced by SND1000_0

Product Description

Replaced by the SND1000 – Sound Phidget.

The 1133 measures sound pressure level from 50dB to 100dB. This sensor is tuned to measure in the frequency range 100Hz to 8kHz. Outside this range the sensor's bandpass filter will drastically reduce the impact on the measured quantity.


Comes packaged with

Functional

Product Specifications

Board Properties
Controlled By Voltage Input (0-5V)
Sensor Properties
Sensor Type Sound
Controlled By Voltage Input (0-5V)
Sensor Output Type Non-Ratiometric
Sound Level Min 50 dB
Sound Level Max 100 dB
Sound Frequency Min 100 Hz
Sound Frequency Max 8 kHz
Sound Resolution 0.16 dB
Sound Error (at 1000 Hz) ± 3 dB
Electrical Properties
Current Consumption Max 8.5 mA
Output Impedance 1 kΩ
Customs Information
Canadian HS Export Code 8473.30.00
American HTS Import Code 8473.30.51.00
Country of Origin CN (China)

Documents

Product History

Date Board Revision Device Version Comment
March 2010 0 N/A Product Release


Getting Started

Welcome to the 1133 user guide! In order to get started, make sure you have the following hardware on hand:


Next, you will need to connect the pieces:

1133 0 Connecting The Hardware.jpg
  1. Connect the 1133 to the HUB0000 with the Phidget cable.
  2. Connect the HUB0000 to your computer with the USB cable.


Now that you have everything together, let's start using the 1133!

Using the 1133

Phidget Control Panel

In order to demonstrate the functionality of the 1133, we will connect it to the HUB0000, and then run an example using the Phidget Control Panel on a Windows machine.


The Phidget Control Panel is available for use on both macOS and Windows machines. If you would like to follow along, first take a look at the getting started guide for your operating system:


Linux users can follow the getting started with Linux guide and continue reading here for more information about the 1133.

First Look

After plugging in the 1133 into the HUB0000, and the HUB0000 into your computer, open the Phidget Control Panel. You will see something like this:

HUB0000 Panel.jpg


The Phidget Control Panel will list all connected Phidgets and associated objects, as well as the following information:

  • Serial number: allows you to differentiate between similar Phidgets.
  • Channel: allows you to differentiate between similar objects on a Phidget.
  • Version number: corresponds to the firmware version your Phidget is running. If your Phidget is listed in red, your firmware is out of date. Update the firmware by double-clicking the entry.


The Phidget Control Panel can also be used to test your device. Double-clicking on an object will open an example.

Voltage Input

Double-click on a Voltage Input object in order to run the example:

1018 Sensors VoltageInput.png


General information about the selected object will be displayed at the top of the window. You can also experiment with the following functionality:

  • Modify the change trigger and/or data interval value by dragging the sliders. For more information on these settings, see the data interval/change trigger page.
  • Select the 1133 from the Sensor Type drop-down menu. The example will now convert the voltage into sound pressure level (dB) automatically. Converting the voltage to sound pressure level (dB) is not specific to this example, it is handled by the Phidget libraries, with functions you have access to when you begin developing!


Technical Details

General

Sound pressure level (SPL) is measured in dB. The 1133 measures sound across a very wide range, with a frequency range of 100Hz to 8kHz and pressure level from 50dB to 100dB. The formula reports SPL , but the sensor is not sophisticated enough to be used as a substitute for a professional SPL Meter.

Formulas

The Phidget libraries can automatically convert sensor voltage into sound pressure level (dB) by selecting the appropriate SensorType. See the Phidget22 API for more details. The Formula to translate voltage from the sensor into a sound pressure level is:



Where SPL is the sound pressure level due to a 1kHz tone in decibels.

Formula Dependencies

It is important to note that measuring SPL is very complex and depends on factors other than only the perceived volume. One of the major contributing factors is the frequency of the sound source. Different frequencies of a sine wave with identical amplitudes will generate very different sound pressure levels. Other factors can be the distance between the sound source and the microphone, and even the type of sound source, such as speakers. The bandpass filter of any speaker can affect the output gain at certain frequencies without any change in the volume knob of the speaker. Electrical noise in the power supplied to the sensor can affect the output. If the power supply is very noisy, this will introduce an offset in the output. It is much more noticeable when trying to measure smaller sound pressure levels due to the very small voltages of the microphone being affected much more. As a result, the previous formula is only accurate for a 1kHz pure tone. At other frequencies, there can be up to an 8dB difference between the calculated SPL and the output of a calibrated Sound Pressure Level meter.

Sensor Response

The following graph is the response of the 1133 to a 1kHz beep. The beep lasts 75ms. The 1133 has a response time of 1.40ms when placed 30 cm (11.9 inches) from the sound source. The output from the 1133 reduces to normal over the next 80ms.

1133 0 Response.png

The voltage output of the sensor can vary by up to 0.1V in a pressure-stable environment. This is especially noticeable at lower output voltages. The best way to deal with this is to average a handful of reported values.

Phidget Cable

Analoginput.jpg

The Phidget Cable is a 3-pin, 0.100 inch pitch locking connector. Pictured here is a plug with the connections labelled. The connectors are commonly available - refer to the Analog Input Primer for manufacturer part numbers.

What to do Next

  • Programming Languages - Find your preferred programming language here and learn how to write your own code with Phidgets!
  • Phidget Programming Basics - Once you have set up Phidgets to work with your programming environment, we recommend you read our page on to learn the fundamentals of programming with Phidgets.


Interface Boards and Hubs

This sensor can be read by any Phidget with an Analog Input or VINT Hub port. It will connect to either one using the included Phidget cable. VINT Hub ports can behave just like Analog Inputs, but have the added flexibility of being able to be used as digital inputs, digital outputs, or ports to communicate with VINT devices. For more information about VINT, see the VINT Overview page.

Product Voltage Inputs
Part Number Price Number of Voltage Inputs Voltage Input Resolution (bits)
1010_0
PhidgetInterfaceKit 8/8/8 Mini-Format
$80.00 8 10 bit
1011_0
PhidgetInterfaceKit 2/2/2
$50.00 2 10 bit
1018_2B
PhidgetInterfaceKit 8/8/8
$80.00 8 10 bit
1018_3B
PhidgetInterfaceKit 8/8/8
$80.00 8
1019_1B
PhidgetInterfaceKit 8/8/8 w/6 Port Hub
$110.00 8 10 bit
1203_2B
PhidgetTextLCD 20X2 : White : Integrated PhidgetInterfaceKit 8/8/8
$70.00 8 10 bit
DAQ1000_0
8x Voltage Input Phidget
$20.00 8 12 bit
HUB0000_1
VINT Hub Phidget
$30.00 6 (Shared) *** 15 bit
HUB0001_0
VINT Hub Phidget
$35.00 6 (Shared) * 15 bit
HUB0002_0
VINT Hub Phidget
$40.00 6 (Shared) *** 15 bit
HUB0007_0
1-Port VINT Hub Phidget
$24.00 1 (Shared) ** 16 bit
HUB5000_0
Wireless VINT Hub
$60.00 6 (Shared) * 16 bit
SBC3003_0
PhidgetSBC4
$120.00 6 (Shared) * 16 bit

Phidget Cables

This sensor comes with its own Phidget cable to connect it to an InterfaceKit or Hub, but if you need extras we have a full list down below. You can solder multiple cables together in order to make even longer Phidget cables, but you should be aware of the effects of having long wires in your system.

Product Physical Properties
Part Number Price Cable Length
3002_0
Phidget Cable 60cm
$2.00 600 mm
3003_0
Phidget Cable 10cm
$1.50 100 mm
3004_0
Phidget Cable 350cm
$3.00 3.5 m
3038_0
Phidget Cable 120cm
$2.25 1.2 m
3039_0
Phidget Cable 180cm
$2.75 1.8 m
CBL4104_0
Phidget Cable 30cm
$1.75 300 mm
CBL4105_0
Phidget Cable 90cm
$2.00 900 mm
CBL4106_0
Phidget Cable 150cm
$2.50 1.5 m
KIT4030_0
Phidget Cable Kit
$10.00 80 mm

Have a look at our sound sensors:

Product Board Properties Sensor Properties
Part Number Price Controlled By Sound Level Min Sound Level Max
SND1000_0
Sound Phidget
$15.00 VINT * 34 dB 102 dB