
1001_0_Product_Manual created: 07/31/08 Page 1

1001 - PhidgetServo 4-Motor

Programming Environment
Operating Systems: Windows 2000/XP/Vista, Windows CE, Linux, and Mac OS X

Programming Languages (APIs): VB6, VB.NET, C#.NET, C++, Flash 9, Flex, Java, LabVIEW,
Python, Max/MSP, and Cocoa.

Examples: Many example applications for all the operating systems and development
environments above are available for download at www.phidgets.com.

Product Features
Controls 4 Remote Control (RC) servo motors.•	

The motor at position 0 is powered directly from the USB port•	

Motors 1, 2, and 3 are powered by an external power supply.•	

Step accuracy of 0.1 degrees•	

Requires a 6 to 12VDC external power supply.•	

Connects directly to a computer’s USB port.•	

1001_0_Product_Manual created: 07/31/08 Page 2

The kit contains:

A PhidgetServo 4-Motor•	

A USB cable•	

You will also need:

2 servo motors•	

A 6 to 12VDC power supply, •	

Attach the connector from the servo motor onto the PhidgetServo board. The board is 1.
labeled with B R W (Black Red White) to match the wire colors from servo motors. If you
connect it backwards, it will not work! Many servo motors have a yellow wire instead of
a white wire. Use the board connector labelled 0 for the first motor and the connector
labelled 4 for the second one.

Connect the PhidgetServo to your PC using the USB cable.2.

Connect the power supply to the PhidgetServo using the barrel connector.3.

1

2

3

Installing the hardware

1001_0_Product_Manual created: 07/31/08 Page 3

Downloading and Installing the software
If you are using Windows 2000/XP/Vista
Go to www.phidgets.com >> Downloads >> Windows

Download and run Phidget21.MSI

You should see the icon on the right hand corner of the Task Bar.

Testing the PhidgetServo 4-Motor Functionality

Double Click on 1. Phidget Servo Controller
4-motor in the Phidget Control Panel to bring
up Servo-full and check that the box labelled
Attached contains the word True.

Select Servo motor 0.2.

Move the slider to make the motor turn. The 3.
motor position is displayed in the box above the
Slider.

Note: To check the second motor just switch the
Servo No to 4 (step 2) and redo step 3. 3

1

2

Double Click on the icon to
activate the Phidget Control Panel
and make sure that the Phidget
Servo Controller 4-Motor is
properly attached to your PC.

http://www.phidgets.com/downloads_sections.php

1001_0_Product_Manual created: 07/31/08 Page 4

Double Click on 1. Phidget Servo Controller 4-motor in the Phidget Preference Pane to
bring up the Phidget Servo Controller Example and check that the Phidget Servo Controller
is attached.

Move the slider to make the first motor turn. 2.

Move the slider to make the second motor turn.3.

If you are using Mac OS X
Go to www.phidgets.com >> downloads >> Mac

Download Mac OS X Framework

Testing the PhidgetServo 4-Motor functionality

Click on System Preferences >> Phidgets (under
Other) to activate the Phidgets Preference Pane.
Make sure that the Phidget Servo Controller
4-motor is properly attached.

1

2
3

http://www.phidgets.com/downloads_sections.php

1001_0_Product_Manual created: 07/31/08 Page 5

If you are using Linux
Go to www.phidgets.com >> Downloads >> Linux

Download Linux Source•	

Have a look at the readme file •	

Build Phidget21 •	

The most popular programming languages in Linux are C/C++ and Java.

Note: Many Linux systems are now built with unsupported third party drivers. It may be
necessary to uninstall these drivers for our libraries to work properly.

Note: Phidget21 for Linux is a user-space library. Applications typically have to be run as root,
or udev/hotplug must be configured to give permissions when the Phidget is plugged in.

If you are using Windows Mobile/CE 5.0 or 6.0
Go to www.phidgets.com >> Downloads >> Windows Mobile/CE

Download x86 or ARMV4I, depending on the platform you are using. Mini-itx and ICOP
systems will be x86, and most mobile devices, including XScale based systems will run the
ARMV4I.

The CE libraries are distributed in .CAB format. Windows Mobile/CE is able to directly install
.CAB files.

The most popular languages are C/C++, .NET Compact Framework (VB.NET and C#). A
desktop version of Visual Studio can usually be configured to target your Windows Mobile
Platform, whether you are compiling to machine code or the .NET Compact Framework.

http://www.phidgets.com/downloads_sections.php
http://www.phidgets.com/downloads_sections.php

1001_0_Product_Manual created: 07/31/08 Page 6

Programming a Phidget
Phidgets’ philosophy is that you do not have to be an electrical engineer in order to do projects
that use devices like sensors, motors, motor controllers, and interface boards. All you need
to know is how to program. We have developed a complete set of Application Programming
Interfaces (API) that are supported for Windows, Mac OS X, and Linux. When it comes to
languages, we support VB6, VB.NET, C#.NET, C, C++, Flash 9, Flex, Java, LabVIEW, Python,
Max/MSP, and Cocoa.

Architecture
We have designed our libraries to give you the maximum amount of freedom. We do not
impose our own programming model on you.

To achieve this goal we have implemented the libraries as a series of layers with the C API at
the core surrounded by other language wrappers.

Libraries
The lowest level library is the C API. The C API can be programmed against on Windows, CE,
OS X and Linux. With the C API, C/C++, you can write cross-platform code. For systems with
minimal resources (small computers), the C API may be the only choice.

The Java API is built into the C API Library. Java, by default is cross-platform - but your
particular platform may not support it (CE).

The .NET API also relies on the C API. Our default .NET API is for .NET 2.0 Framework, but
we also have .NET libraries for .NET 1.1 and .NET Compact Framework (CE).

The COM API relies on the C API. The COM API is programmed against when coding in VB6,
VBScript, Excel (VBA), Delphi and Labview.

The ActionScript 3.0 Library relies on a communication link with a PhidgetWebService (see
below). ActionScript 3.0 is used in Flex and Flash 9.

Programming Hints
Every phidget has a unique serial number - this allows you to sort out which device is which •	
at runtime. Unlike USB devices which model themselves as a COM port, you don’t have
to worry about where in the USB bus you plug your phidget in. If you have more than
one phidget, even of the same type, their serial numbers enable you to sort them out at
runtime.

Each phidget you have plugged in is controlled from your application using an object/handle •	
specific to that phidget. This link between the phidget and the software object is created
when you call the .OPEN group of commands. This association will stay, even if the phidget
is disconnected/reattached, until .CLOSE is called.

The Phidget APIs are designed to be used in an event-driven architecture. While it is •	
possible to poll them, we don’t recommend it. Please familiarize yourself with event
programming.

Networking Phidgets
The PhidgetWebService is an application written by Phidgets Inc. which acts as a
network proxy on a computer. The PhidgetWebService will allow other computers on the
network to communicate with the Phidgets connected to that computer. ALL of our APIs

1001_0_Product_Manual created: 07/31/08 Page 7

have the capability to communicate with Phidgets on another computers that has the
PhidgetWebService running.

The PhidgetWebService also makes it possible to communicate with other applications that
you wrote and that are connected to the PhidgetWebService, through the PhidgetDictionary
object.

API documentation
We maintain API manuals for COM (Windows), C (Windows/Mac OSX/Linux), Action Script,
.Net and Java. Look at the section that corresponds to the Phidget you are using. These
manuals can be accessed in different ways:

Using Downloads on main menu
Click on Downloads >> Operating System (i.e. Windows) >> Platform (i.e. C#) >> API
Document (i.e. Net API Manual)

Using Products on Home Page
Click on InterfaceKits (under Products) >> 1018 PhidgetInterfaceKit 8/8/8 >> API Manual
(Under Software Information)

Using Information on Home Page
Click on Information (under Main Menu) >> Your API Manual (under Phidgets API Manuals)

Examples
We have written examples to illustrate how the APIs are used. Examples for the C#.NET
programming language Include .exe files for each of the examples in the directory root.

Due to the large number of languages and devices we support, we cannot provide examples
in every language for every phidget. Some of the examples are very minimal, and other
examples will have a full-featured GUI allowing all the functionality of the device to be explored.
Most developers start by modifying existing examples until they have an understanding of the
architecture.

To get the examples, go to www.phidgets.com and click on Downloads. Under Step 2: click on
your platform of choice and click on the File Name besides Examples.

Support
Click on Live Support on www.phidgets.com to chat with our support desk experts•	

Call the support desk at 1.403.282.7335 8:00 AM to 5:00 PM Mountain Time (US & •	
Canada) - GMT-07:00

E-mail sales@phidgets.com•	

1001_0_Product_Manual created: 07/31/08 Page 8

/* - Servo simple -
 **
 * This simple example sets up a Servo objectm hooks the event handlers and opens it for
 * device connections. Once a Servo is attached with a motor in motor 0 it will simulate
 * moving the motor from position 15 to 231, displaying the event details to the console.
 * For a more detailed example, see the Servo-full example.
 *
 * Please note that this example was designed to work with only one Phidget Servo
 * connected. For an example using multiple Phidget Servos, please see a “multiple”
 * example in the Servos Examples folder.
 *
 * Copyright 2007 Phidgets Inc.
 * This work is licensed under the Creative Commons Attribution 2.5 Canada License.
 * To view a copy of this license, visit http://creativecommons.org/licenses/by/2.5/ca/
 */
using System;
using System.Collections.Generic;
using System.Text;
//Needed for the Servo class, Phidget base classes, and the PhidgetException class
using Phidgets;
//Needed for the Phidget event handling classes
using Phidgets.Events;
//Using this simply for the sleep() method so that the for loop will wail for the motor
//to finish moving to the previous new position before setting a new position
using System.Threading;

namespace Servo_simple
{
 class Program
 {
 static void Main(string[] args)
 {
 try
 {
 //Declare a Servo object
 Servo servo = new Servo();

 //Hook the basic event handlers
 servo.Attach += new AttachEventHandler(servo_Attach);
 servo.Detach += new DetachEventHandler(servo_Detach);
 servo.Error += new ErrorEventHandler(servo_Error);

 //hook the phidget specific event handlers
 servo.PositionChange += new PositionChangeEventHandler
 (servo_PositionChange);

 //open the Servo object for device connections
 servo.open();

 //Get the program to wait for a Servo to be attached
 Console.WriteLine(“Waiting for Servo to be attached...”);
 servo.waitForAttachment();

 //Set the initial position for the servo. I set it to 15 here just
 //since I am going to cycle through the positive values to show a basic
 //full movement
 if (servo.Attached)

Simple example written in C#

1001_0_Product_Manual created: 07/31/08 Page 9

 {
 servo.servos[0].Position = 15.00;
 }
 double i;

 //Wait for the motor to finish getting into position and let the user
 //continue
 Console.WriteLine(“Press any key to continue...”);
 Console.Read();

 //Move the motor from position value 15 to 231m we sleep for
 //10 milliseconds between each step to give the motor enough time to
 //move to the set position
 if (servo.Attached)
 {
 for (i = 15.00; i < 232.00; i++)
 {
 Thread.Sleep(10);
 servo.servos[0].Position = i;
 }
 }

 //Wait for the events to fire and display, user input will continue the
 //program
 Console.WriteLine(“Press any key to end...”);
 Console.Read();

 //user input was read so we can terminate the program now, close the
 //Servo object
 servo.close();

 //set the object to null to get it out of memory
 servo = null;

 //if no exceptions were thrown at this point it is safe to terminate
 Console.WriteLine(“ok”);
 }
 catch (PhidgetException ex)
 {
 Console.WriteLine(ex.Description);
 }

 }

 //Attach event handler...Display te serial number of the attached servo device
 static void servo_Attach(object sender, AttachEventArgs e)
 {
 Console.WriteLine(“Servo {0} attached!”, e.Device.SerialNumber.ToString());
 }

 //Detach event handler...Display the serial number of the detached servo device
 static void servo_Detach(object sender, DetachEventArgs e)
 {
 Console.WriteLine(“Servo {0} detached!”, e.Device.SerialNumber.ToString());
 }

 //Error event handler....Display the error description to the console
 static void servo_Error(object sender, ErrorEventArgs e)
 {

1001_0_Product_Manual created: 07/31/08 Page 10

 Console.WriteLine(e.Description);
 }

 //Position CHange event handler...display which motor changed position and
 //its new position value to the console
 static void servo_PositionChange(object sender, PositionChangeEventArgs e)
 {
 Console.WriteLine(“Servo {0} Position {1}”, e.Index, e.Position);
 }
 }
}

Technical Section
Servo Motors
Servos are motors that are typically used
when shaft position needs to be controlled.
Internally, a servo motor’s shaft is
mechanically connected to a potentiometer;
this tells the motor’s integrated electronics
the present position of the shaft. A pulse-
code-modulated signal sent from the
PhidgetServo on the control wire tells the
motor the desired position of the shaft,
which is set in software. The motor is
then powered until the current-position and
desired-position match.

Pulse Code Modulation (PCM)
A PCM signal has a defined period (typically
20ms in servo applications) and a specified

ON- and OFF-time. The ON-time is the amount of time during the period that the signal is
at 5V; the rest of the time the signal is at 0V (the OFF-time). When using PCM with servo
motors, one specific duration of ON-time will represent the minimum shaft position, and a
different and longer duration ON-time will represent the maximum shaft position. The ON-time
in between these two bounds is the setting where the shaft-position is centered. These values
are defined by the motor manufacturer and vary between servo motors.

Using the PhidgetServo with a Servo Motor
The PhidgetServo has been designed to be used with a variety of RC servo motors
independant of the motor-specific position, velocity and torque limits. Select a motor that
suits your application and falls within the PhidgetServo device specifications (see page 9). To
use a servo motor, simply set the desired shaft position in software. It should be noted that
the PhidgetServo can not sense the actual position of a servo on its own. The servo motor at
position 0 is powered by the USB bus from the PC; an external power supply is only required
to power motors as positions 1, 2, and 3.

1001_0_Product_Manual created: 07/31/08 Page 11

Calculating Servo Motor Pulse Codes
The width of the pulse sent from the PhidgetServo to the motor translates to an angular position
of the motor shaft. In many cases, a pulse width of 1.5 milliseconds signifies the center position
of the shaft; the upper and lower timing bounds depend on the manufacurer and model of the
servo used. The timing of the pulse code can be calculated with the following formula:

Pulse Width (in microseconds) = (Software MotorPosition + 23) * 10.6

Servo Motor Gear Slop
Although the PhidgetServo can position to an accuracy of 0.1 degrees, the repeatability of po-
sitioning the shaft of a servo motor is affected by the servo motor’s gear slop. Gear slop is the
amount of play between the interlocking teeth of gears within the servo motor. More expensive
servo motors, built with precision gears, will have a smaller amount of gear slop, while cheaper
RC servo motors constructed with plastic gears may have one degree or more.

Using the PhidgetServo with Continuous Rotation Servos
A continuous rotation servo is a servo motor that has had its headgear-stop removed and po-
tentiometer replaced by two matched-value resistors. This has the effect of allowing the motor
to rotate freely through a full range of motion, but disables the motor’s ability to control shaft
position.

When using the PhidgetServo with a servo motor modified in this way, position control in soft-
ware becomes the motor’s speed control. Because the two resistors that replace the motor’s
potentiometer are matched in value, the motor will always think its shaft is at center position. If
the target position in software is set to center, the motor will believe it has achieved the target
and will therefore not rotate. The further away from center the target position is set to, the
faster the motor will rotate (trying to reach that position, but never doing so). Changing the
value above or below center changes the direction of rotation.

Using the PhidgetServo with PCM-to-DC Motor Controllers
Some DC motor controllers accept a servo motor PCM signal as valid input, and use the
signal to control the speed of a DC motor. Examples of these include Victor and Thor
series motor controllers from IFI Robotics. Operation of these are similar to the way the
PhidgetServo is used to control continuous rotation servos, however DC motors with much
higher voltage/current ratings can be driven. Note: a buffer on the control line is sometimes
required when interfacing to these types of motor controllers, and can typically be purchased
from the motor controller manufacturer.

RC Servo Motors
The PhidgetServo 4-Motor will work with a variety of small to medium sized 3-wire servo
motors. A few motors are listed below.

Manufacturer Part Number Description
Hitec HS-55 Feather Series RC Servo Motor
Hitec HS-322HD Deluxe Series RC Servo Motor (shown)
Hitec HS-805BB Mega Quarter Scale RC Servo Motor

The Hitech HS-322HD is available for purchase at www.phidgets.com. Many RC servo motors
are available directly from manufacturers like Hitec or at local distributors.

1001_0_Product_Manual created: 07/31/08 Page 12

API Section

We document API Calls specific to the 1001 Phidgetservo 4-Motor. Functions common to all
Phidgets are not covered here. This section is deliberately generic - for calling conventions in
a specific language, refer to that languages’ API manual.

Functions
int MotorCount() [get] : Constant = 4
Returns the number of servos that can be controlled by this PhidgetServo. Note that there is
no way of determining the number of servos actually attached.

double Position(int ServoIndex) [get,set] : Degrees
Sets/returns the desired servo motor position for a particular servo motor.

Note that reading Position will not tell you where the servo really is. RC Servos are open
loop – the PhidgetServo can command them to travel to a position, but there is no feedback
available for if they arrived, or their position.

If the servo is not engaged, the position is unknown and calling this function will throw an
exception.

The range is between PositionMin and PositionMax, and corresponds aproximately to an
angle in degrees. Note that most servos will not be able to operate accross this entire range.
Typically, the range might be 25 - 180 degrees, but this depends on the servo.

On the 1001 PhidgetServo 4-Motor, 0 is the servo motor powered by USB, and servos 1-3
are powered by an external power supply.

double PositionMax(int ServoIndex) [get] : Constant
Returns the maximum position that the PhidgetServo will accept, or return.

double PositionMin(int ServoIndex) [get] : Constant
Returns the minimum position that a PhidgetServo will accept, or return.

bool Engaged(int ServoIndex) [get,set]
If Engaged is set to false, no PWM signals will be sent to the servo. This engages or
disengages the servo. The motor is engaged whenever you set a position, or use this function
to disengage and reengage without setting a position.

Events
OnPositionChange(int ServoIndex, double Position) [event]
An event that is issued whenever the position of a PhidgetServo changes.

1001_0_Product_Manual created: 07/31/08 Page 13

Mechanical Drawing

Device Specifications
Pulse Code Period 20 ms
Minimum Pulse Width 10 us
Maximum Pulse Width 2.55 ms
Time Resolution 1 us

Output Controller Update Rate 50 updates / second

Output Impedance (control) 600 Ohms

Lower Position Limit - 23.00º
Upper Position Limit 232.99º

Operating Motor Voltage 5.0 V
External Power Supply Voltage 6 VDC - 12 VDC
External Power Current Consumption 1500 mA max (500 mA / motor)

USB-Power Current Specification 500 mA max
Device Quiescent Current Consumption 13 mA
Device Active Current Consumption 500 mA max

Hitech HS-322HD RC Servo Specifications

Torque @ 4.8V 41.66 oz.in
Speed @ 4.8V 190ms/60º
Size L x W x H 1.57” x 0.78” x 1.43”
Weight 1.51 oz.

1:1 scale

1001_0_Product_Manual created: 07/31/08 Page 14

Product History
Date Product Revision Comment
June 2001 DeviceVersion200 1 Degree Position Resolution
June 2002 DeviceVersion300 0.1 Degree Position Resolution
January 2004 DeviceVersion313 State Echoing Added

	Product Features
	Installing the hardware
	Downloading and Installing the software
	If you are using Windows 2000/XP/Vista
	Testing the PhidgetServo 4-Motor Functionality
	If you are using Mac OS X
	Testing the PhidgetServo 4-Motor functionality
	If you are using Linux
	If you are using Windows Mobile/CE 5.0 or 6.0

	Programming a Phidget
	Architecture
	Libraries
	Programming Hints
	Networking Phidgets
	API documentation
	Examples
	Support
	Simple example written in C#

	Technical Section
	Servo Motors
	Pulse Code Modulation (PCM)
	Using the PhidgetServo with a Servo Motor
	Calculating Servo Motor Pulse Codes
	Servo Motor Gear Slop
	Using the PhidgetServo with Continuous Rotation Servos
	Using the PhidgetServo with PCM-to-DC Motor Controllers
	RC Servo Motors	

	API Section
	We document API Calls specific to the 1001 Phidgetservo 4-Motor. Functions common to all Phidgets are not covered here. This section is deliberately generic - for calling conventions in a specific language, refer to that languages’ API manual.
	Functions
	Events

	Device Specifications
	Mechanical Drawing
	Product History

