
Phidgets
COM API Manual

Phidgets COM API Manual
Version 2.1.8

© Phidgets Inc. 2011

Last updated: February 22, 2011

Contents
Introduction
6	 Overview

6	 How to use Phidgets

6	 Class Hierarchy

Phidget
7	 Structures

8	 Functions

10	 Constants

11	 Properties

13	 Events

PhidgetAccelerometer
15	 Properties

16	 Events

PhidgetAdvancedServo
17	 Structures

17	 Functions

18	 Properties

22	 Events

PhidgetAnalog
23	 Properties

24	 Events

PhidgetBridge
25	 Structures

25	 Properties

27	 Events

PhidgetEncoder
28	 Properties

30	 Events

PhidgetFrequencyCounter

31	 Structures

31	 Functions

31	 Properties

33	 Events

PhidgetGPS
34	 Structures

34	 Properties

35	 Events

PhidgetInterfaceKit
37	 Properties

40	 Events

PhidgetIR
41	 Structures

42	 Functions

44	 Events

PhidgetLED
46	 Structures

46	 Properties

PhidgetMotorControl
48	 Properties

52	 Events

PhidgetPHSensor
55	 Properties

56	 Events

PhidgetRFID
57	 Structures

57	 Functions

57	 Properties

59	 Events

PhidgetServo
60	 Structures

60	 Functions

61	 Properties

62	 Events

PhidgetSpatial
63	 Structures

63	 Properties

67	 Functions

68	 Events

PhidgetStepper
69	 Properties

74	 Events

PhidgetTemperatureSensor
76	 Properties

78	 Events

PhidgetTextLCD
79	 Structures

79	 Functions

80	 Properties

PhidgetTextLED
82	 Properties

PhidgetWeightSensor
83	 Properties

83	 Events

PhidgetManager
84	 Functions

85	 Properties

88	 Events

PhidgetDictionary
90	 Functions

92	 Properties

92	 Events

PhidgetKeyListener
94	 Functions

94	 Properties

95	 Events

6Introduction

Introduction

Overview
This manual describes the Application Programming Interface (API) for each Phidget device, as
exposed by the COM library. This API can be used from a variety of languages; this manual focuses
on use within VB6.0, and therefore presents the COM interface as a VB6.0 user sees it.

How to use Phidgets
Phidgets are an easy to use set of building blocks for low cost sensing and control from your PC.
Using the Universal Serial Bus (USB) as the basis for all Phidgets, the complexity is managed behind
this easy to use and robust Application Program Interface (API) library.

This library is written for and available on Windows only.

Languages that make use of the COM API and are supported by Phidgets include: VB6.0, Labview,
Delphi, VBA and VBScript. Each of these languages have their own way of exposing functionality,
but the base calls will be the same.

Refer to the User Guide for your Phidget and the Software Overview page for more detailed,
language unspecific API documentation. The User Guide, along with other resources, can be found
on the product page for your device. Also, there are a set of VB6.0 examples available for download.

Please note that if your method contains more than one parameter, do not enclose the parameters
inside brackets. For example instead of:

Object.getProperty(Parameter1, Parameter2)

You should write:

Object.getProperty Parameter1, Parameter2

Class Hierarchy
Phidget•	

PhidgetAccelerometer•	

PhidgetAdvancedServo•	

PhidgetEncoder•	

PhidgetInterfaceKit•	

PhidgetLED•	

PhidgetMotorControl•	

PhidgetPHSensor•	

PhidgetRFID•	

PhidgetServo•	

PhidgetStepper•	

PhidgetTemperatureSensor•	

PhidgetTextLCD•	

PhidgetTextLED•	

PhidgetWeightSensor•	

PhidgetManager•	

PhidgetDictionary•	

PhidgetKeyListener•	

http://www.phidgets.com/docs/Software_Overview

7Phidget

Phidget
Class documentation for Phidget. This is the base class from which all other device classes inherit.
These calls are common to all Phidgets objects. See the General Phidget Programming guide for
more in-depth usage instructions and examples.

Structures

PhidgetCOM_Error
The Phidget error codes. EnableVerboseErrors is enabled, every call in the library will return
one of these codes on error, or S_OK on success.

The E_(error) codes are used for regular function calls, and represent the scode part of
an HRESULT. The EE_(error) codes are used for the OnError event, and don’t depend on
EnableVerboseErrors. These errors are defined in the General Phidget Programming page.

Enum PhidgetCOM_Error {

		 E_PHIDGETCOM_OK,

		 E_PHIDGETCOM_NOTFOUND,

		 E_PHIDGETCOM_NOMEMORY,

		 E_PHIDGETCOM_UNEXPECTED,

		 E_PHIDGETCOM_INVALIDARG,

		 E_PHIDGETCOM_NOTATTACHED,

		 E_PHIDGETCOM_INTERRUPTED,

		 E_PHIDGETCOM_INVALID,

		 E_PHIDGETCOM_NETWORK,

		 E_PHIDGETCOM_UNKNOWNVAL,

		 E_PHIDGETCOM_BADPASSWORD,

		 E_PHIDGETCOM_UNSUPPORTED,

		 E_PHIDGETCOM_DUPLICATE,

		 E_PHIDGETCOM_TIMEOUT,

		 E_PHIDGETCOM_OUTOFBOUNDS,

		 E_PHIDGETCOM_EVENT,

		 E_PHIDGETCOM_NETWORK_NOTCONNECTED,

		 E_PHIDGETCOM_WRONGDEVICE,

		 E_PHIDGETCOM_CLOSED,

		 E_PHIDGETCOM_BADVERSION,

		 //Start of Error Event codes

		 EE_PHIDGETCOM_NETWORK,

		 EE_PHIDGETCOM_BADPASSWORD,

		 EE_PHIDGETCOM_BADVERSION,

		 EE_PHIDGETCOM_OVERRUN,

		 EE_PHIDGETCOM_PACKETLOST,

		 EE_PHIDGETCOM_WRAP,

		 EE_PHIDGETCOM_OVERTEMP,

		 EE_PHIDGETCOM_OVERCURRENT,

		 EE_PHIDGETCOM_OUTOFRANGE

};

http://www.phidgets.com/docs/General_Phidget_Programming

8Phidget

Functions

Open
Opens a phidget.

Open(

	 SerialNumber as Long [optional]

);

Parameters:

SerialNumber [optional]
Serial number of the Phidget to open. Do not specify to open any.

OpenRemote
Opens a Phidget remotely using a server id.

OpenRemote(

	 ServerID as String [optional]

	 SerialNumber as Long [optional]

	 Password as String [optional]

);

Parameters:

ServerID
Server ID of the webservice to connect to. Not not specify to connect to any.

SerialNumber
Serial number of the Phidget to open. Do not specify to open any.

Password
Password of the webservice. Do not specify if the webservice does not have a password.

OpenRemoteIP
Opens a Phidget remotely using an address and port.

OpenRemoteIP(

	 IPAddress as String

	 Port as Long

	 SerialNumber as Long [optional]

	 Password as String [optional]

);

9Phidget

Parameters:

IPAddress
The address of the webservice to connect to.

Port
The port of the webservice to connect to.

SerialNumber
Serial number of the Phidget to open. Do not specify to open any.

Password
Password of the webservice. Do not specify if the webservice does not have a password.

Close
Closes a Phidget.

Close();

WaitForAttachment
Blocks until the Phidget has attached.

WaitForAttachment(

	 milliseconds as Long

};

Parameters:

milliseconds
The number of milliseconds to wait for an attachment. Specify 0 to wait forever.

EnableLogging
Enables logging in the C library. This is for debugging purposes.

EnableLogging(

	 level as Long,

	 file as String

);

Parameters:

level
The highest level of logs to report. This can be any integer from 1 to 6. See the constants section
below for more information.

file
The file to output logs to. Specify NULL to send logs to the console.

10Phidget

Constants
There are 6 levels of logging. Each higher level will include all lower levels when outputting
logs. These are represented either as a set of constants or an enumerator, depending on
language.

PHIDGET_LOG_CRITICAL = 1

Critical error messages.

This is the lowest logging level. Errors at this level are generally non-recoverable and
indicate either hardware problems, library bugs, or other serious issues.

PHIDGET_LOG_ERROR = 2

Non-critical error messages.

Errors at this level are generally automatically recoverable, but may help to track down
issues.

PHIDGET_LOG_WARNING = 3

Warning messages.

Warnings are used to log behavior that is not necessarily in error, but is nevertheless odd
or unexpected.

PHIDGET_LOG_DEBUG = 4

Debug messages.

Debug messages are generally used for debugging at Phidgets Inc.

Note: PHIDGET_LOG_DEBUG messages are only logged in the debug version of the
library, regardless of logging level. Thus, these logs should never be seen outside of
Phidgets Inc.

PHIDGET_LOG_INFO = 5

Informational messages.

Informational messages track key happenings within phidget21 - mostly to do with threads
starting and shutting down, and the internal USB code.

PHIDGET_LOG_VERBOSE = 6

Verbose messages.

This is the highest logging level. Verbose messages are informational messages that are
expected to happen so frequently that they tend to drown out other log messages.

11Phidget

DisableLogging
Disabled logging in the C library.

DisableLogging();

Log
Sends a log message to the log. Make sure to enable logging first.

Log(

	 level as Long,

	 ident as String,

	 log as String

);

Parameters:

level
The level to log at. There are 6 levels at 1-6.

ident
A user defined string to identify the log. This can be blank.

log
The message to log.

EnableVerboseErrors
Enables stricter error handling. This changes the behavior of the library to more closely match the
C API, and .NET. By default, most common errors are sent out via the OnError event, instead of
being raised directly by the offending Function call - this makes error handling unnecessary. This
functionality has been added for users who require stricter error handling.

When verbose error handling is active, the errors will be one of the codes in PhidgetCOM_Error.
When inactive, any errors that are raised will be standard COM errors such as E_FAIL.

EnableLogging(

	 state as Boolean

);

Parameters:

state
True to enable, False to disable.

Properties

12Phidget

IsAttached
Gets the attached status of a Phidget.

IsAttached as Boolean [get]

DeviceType
Gets the device type of a Phidget.

DeviceType as String [get]

DeviceVersion
Gets the firmware version of a Phidget.

DeviceVersion as Long [get]

Name
Gets the long name of a Phidget.

Name as String [get]

SerialNumber
Gets the unique serial number of a Phidget.

SerialNumber as Long [get]

Label
Gets / Sets the Label of a Phidget. Note that setting the label is not yet supported on Windows.

Label as String [get,set]

IsAttachedToServer
Gets the attached to server state of a remotely opened Phidget.

IsAttachedToServer as Boolean [get]

Address
Gets the webservice address of a remotely opened Phidget.

Address as String [get]

Port

13Phidget

Gets the webservice port number of a remotely opened Phidget.

Port as Long [get]

ServerID
Gets the webservice Server ID of a remotely opened Phidget.

ServerID as String [get]

LibraryVersion
Gets the phidget library version. This returns both the C library and COM library versions as a multi-
line string.

LibraryVersion as String [get]

Events
Note that these events are actually members of each Phidget device class rather then the base
class. However, since they are common to all Phidgets, they are documented here.

OnAttach
Fired when a Phidget is plugged in and ready to use.

event OnAttach

OnDetach
Fired when a Phidget is unplugged.

event OnDetach

OnError
Fired on an asynchronous error. These are mostly network related.

event OnError(

	 Description as String,

	 SCODE as Long

)

Parameters:

14Phidget

Description
A description of the error.

SCODE
An error code corresponding to the error. See the General Phidget Programming guide for a list of
error codes.

OnServerConnect
Fired when a connection to the webservice is made, when opening a Phidget remotely.

event OnServerConnect

OnServerDisconnect
Fired when a connection to the webservice is lost, when opening a Phidget remotely.

event OnServerDisconnect

http://www.phidgets.com/docs/General_Phidget_Programming

15PhidgetAccelerometer

PhidgetAccelerometer
Class documentation for PhidgetAccelerometer. This class contains all calls specific to the Phidget
Accelerometer. See your device’s User Guide for more specific API details, technical information, and
revision details. The User Guide, along with other resources, can be found on the product page for
your device.

Properties

AxisCount
Gets the number of acceleration axes supported by this board.

AxisCount as Long [get]

Acceleration
Gets the current acceleration of a axis.

Acceleration(

	 Index as Long

) as Double [get]

Parameters:

Index
The acceleration axis.

AccelerationChangeTrigger
Gets / Sets the change trigger for an axis.

AccelerationChangeTrigger(

	 Index as Long

) as Double [get,set]

Parameters:

Index
The acceleration axis.

AccelerationMax
Gets the maximum acceleration that can be measured by as axis.

AccelerationMax(

	 Index as Long

) as Double [get]

Parameters:

Index
The acceleration axis.

16PhidgetAccelerometer

AccelerationMin
Gets the minimum acceleration that can be measured by an axis.

AccelerationMin(

	 Index as Long

) as Double [get]

Parameters:

Index
The acceleration axis.

Events

OnAccelerationChange
Fired when the acceleration on an axis changes by more then the change trigger.

event OnAccelerationChange(

	 Index as Long,

	 Acceleration as Double

)

Parameters:

Index
The acceleration axis.

Acceleration
The acceleration.

17PhidgetAdvancedServo

PhidgetAdvancedServo
Class documentation for PhidgetAdvancedServo. This class contains all calls specific to the Phidget
Advanced Servo. See your device’s User Guide for more specific API details, technical information,
and revision details. The User Guide, along with other resources, can be found on the product page
for your device.

Structures

PhidgetCOM_ServoType
Used for the ServoType property. These are the predefined servo types supported by Phidgets Inc.
This list may be incomplete.

enum PhidgetCOM_ServoType {

	 PHIDGETCOM_SERVO_DEFAULT = 1,

	 PHIDGETCOM_SERVO_RAW_us_MODE,

	 PHIDGETCOM_SERVO_HITEC_HS322HD,

	 PHIDGETCOM_SERVO_HITEC_HS5245MG,

	 PHIDGETCOM_SERVO_HITEC_805BB,

	 PHIDGETCOM_SERVO_HITEC_HS422,

	 PHIDGETCOM_SERVO_TOWERPRO_MG90,

	 ...,

	 PHIDGETCOM_SERVO_USER_DEFINED

}

Functions

setServoParameters
Sets parameters for a custom servo type. This includes PCM range, degrees of rotation and
maximum velocity. This affect min and max position, and the PCM to degree mapping formulas.

setServoParameters(

	 Index as Long,

	 MinUs as double,

	 MaxUs as double,

	 Degrees as double,

	 VelocityMax as double

};

Parameters:

Index
The motor index.

MinUs
The minimum PCM supported by the motor, in microseconds.

MaxUs

18PhidgetAdvancedServo

The maximum PCM supported by the motor, in microseconds.

Degrees
Real degrees of rotation represented by the given PCM range

VelocityMax
Maximum velocity supported by the servo, in degrees/second.

Properties

MotorCount
Gets the number of motors supported by this controller.

MotorCount as Long [get]

Acceleration
Gets / Sets the acceleration for a motor.

Acceleration(

	 Index as Long

) as Double [get,set]

Parameters:

Index
The motor index.

AccelerationMax
Gets the maximum acceleration supported by a motor.

AccelerationMax(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

AccelerationMin
Gets the minimum acceleration supported by a motor.

AccelerationMin(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

19PhidgetAdvancedServo

Current
Gets the current current draw of a motor.

Current(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

Position
Gets / Sets the current / target position of a motor.

Position(

	 Index as Long

) as Double [get,set]

Parameters:

Index
The motor index.

PositionMax
Gets / Sets the maximum position supported by a motor.

PositionMax(

	 Index and Long

) as Double [get,set]

Parameters:

Index
The motor index.

PositionMin
Gets / Sets the minimum position supported by a motor.

PositionMin(

	 Index as Long

) as Double [get,set]

Parameters:

Index
The motor index.

20PhidgetAdvancedServo

Velocity
Gets the current velocity of a motor.

Velocity(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

VelocityLimit
Gets / Set the velocity limit of a motor.

VelocityLimit(

	 Index as Long

) as Double [get,set]

Parameters:

Index
The motor index.

VelocityMax
Gets the maximum velocity limit supported by a motor.

VelocityMax(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

VelocityMin
Gets the minimum velocity limit supported by a motor.

VelocityMin(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

21PhidgetAdvancedServo

Engaged
Gets / Sets the engaged state of a motor. This is whether a motor is powered or not.

Engaged(

	 Index as Long

) as Boolean [get,set]

Parameters:

Index
The motor index.

SpeedRampingOn
Gets / Sets the speed ramping state of a motor. This is whether or not the motor uses velocity and
acceleration to move.

SpeedRampingOn(

	 Index as Long

) as Boolean [get,set]

Parameters:

Index
The motor index.

Stopped
Gets the stopped state of a motor. If this is true, the motor is not moving and there are no
outstanding commands.

Stopped(

	 Index as Long

) as Boolean [get]

Parameters:

Index
The motor index.

ServoType
Gets / Sets the servo type for an index. There are several predefined servo types. All other types of
servos can be set up using the setServoParameters function.

ServoType(

	 Index as Long

) as PhidgetCOM_ServoType [get,set]

Parameters:

Index
The motor index.

22PhidgetAdvancedServo

Events

OnCurrentChange
Fired when the current draw of a motor changes.

event OnCurrentChange(

	 Index as Long,

	 Current as Double

)

Parameters:

Index
The motor index.

Current
The current draw.

OnPositionChange
Fired when the position of a motor changes.

event OnPositionChange(

	 Index as Long,

	 Position as Double

)

Parameters:

Index
The motor index.

Position
The motor position.

OnVelocityChange
Fired when the velocity of a motor changes.

event OnVelocityChange(

	 Index as Long,

	 Velocity as Double

)

Parameters:

Index
The motor index.

Velocity
The current velocity.

23PhidgetAnalog

PhidgetAnalog
Class documentation for PhidgetAnalog. This class contains all calls specific to the Phidget Analog.
See your device’s User Guide for more specific API details, technical information, and revision
details. The User Guide, along with other resources, can be found on the product page for your
device.

Properties

OutputCount
Gets the number of analog outputs supported by the PhidgetAnalog.

OutputCount as Long [get]

Voltage
Gets / Sets the current voltage setting for an analog output, in Volts. The range is VoltageMin-
VoltageMax.

Voltage(

	 Index as long

) as Double [get,set]

Parameters:

Index
The analog output index.

VoltageMin
Gets the minimum supported voltage for an analog output, in Volts.

VoltageMin(

	 Index as long

) as Double [get]

Parameters:

Index
The analog output index.

VoltageMax
Gets the maximum supported voltage for a analog output, in Volts.

VoltageMax(

	 Index as long

) as Double [get]

Parameters:

Index

24PhidgetAnalog

The analog output index.

Enabled
Gets / Sets the enabled state (power) for an analog output.

Enabled(

	 Index as Long

) as Boolean [get,set]

Parameters:

Index
The analog output index.

Events

OnError
The PhidgetAnalog will throw error events under certain circumstances:

SCODE = EEPHIDGET_OVERCURRENT - An Overcurrent condition has occured on an output.
Under this condition, the output is clamped to 20mA.

SCODE = EEPHIDGET_OVERTEMP - A Thermal Shutdown state has occured. The outputs will be
shut down under this condition.

When the overcurrent or overtemperature state have ended, there will be an error event with the
EEPHIDGET_OK code.

See the ErrorDescription String for specific error details.

event OnError(

	 Description as String,

	 SCODE as LONG

)

Parameters:

Description
A description of the error.

SCODE
An error code corresponding to the error.

25PhidgetBridge

PhidgetBridge
Class documentation for PhidgetBridge. This class contains all calls specific to the Phidget Bridge.
See your device’s User Guide for more specific API details, technical information, and revision
details. The User Guide, along with other resources, can be found on the product page for your
device.

Structures

PhidgetCOM_BridgeGain
Used for the Gain property. These are the predefined gains supported by the Phidget Bridge.

enum PhidgetCOM_BridgeGain

{

	 PHIDGETCOM_BRIDGE_GAIN_1 = 1,

	 PHIDGETCOM_BRIDGE_GAIN_8,

	 PHIDGETCOM_BRIDGE_GAIN_16,

	 PHIDGETCOM_BRIDGE_GAIN_32,

	 PHIDGETCOM_BRIDGE_GAIN_64,

	 PHIDGETCOM_BRIDGE_GAIN_128,

	 PHIDGETCOM_BRIDGE_GAIN_UNKNOWN

}

Properties

InputCount
Gets the number of bridges supported by the PhidgetBridge.

InputCount as Long [get]

BridgeValue
Gets the value of the selected bridge, in mV/V.

BridgeValue(

	 Index as long

) as Double [get]

Parameters:

Index
The bridge index.

BridgeMin
Gets the minimum value that the selected bridge can measure, in mV/V. This value will depend on
the selected gain.

26PhidgetBridge

BridgeMin(

	 Index as long

) as Double [get]

Parameters:

Index
The bridge index.

BridgeMax
Gets the maximum value that the selected bridge can measure, in mV/V. This value will depend on
the selected gain.

BridgeMax(

	 Index as long

) as Double [get]

Parameters:

Index
The bridge index.

Enabled
Gets / Sets the enabled state (power) of a bridge.

Enabled(

	 Index as Long

) as Boolean [get,set]

Parameters:

Index
The bridge index.

Gain
Gets / Sets the gain for a selected bridge.

Gain(

	 Index as Long

) as PhidgetCOM_BridgeGain [get,set]

Parameters:

Index
The bridge index.

DataRate
Gets / Sets the data rate, in ms. Data rate applies to all bridges simultaneously.

DataRate as Long [get,set]

27PhidgetBridge

DataRateMin
Gets the minimum supported data rate, in ms.

DataRateMin as Long [get]

DataRateMax
Gets the maximum supported data rate, in ms

DataRateMax as Long [get]

Events

OnBridgeData
Fired at the specified DataRate, for each enabled bridge. Value is the BridgeValue, in mV/V.

event OnBridgeData(

	 Index as Long,

	 Value as Double

)

Parameters:

Index
The bridge index.

Value
The bridge value of the selected bridge, in mV/V.

OnError
The PhidgetBridge will throw error events under certain circumstances:

SCODE = EEPHIDGET_OUTOFRANGE - A bridge input has gone out of range. This indicates
either an overrange or underrange condition. If possible, gain should be reduced.

See the ErrorDescription String for specific error details.

event OnError(

	 Description as String,

	 SCODE as LONG

)

Parameters:

Description
A description of the error.

SCODE
An error code corresponding to the error.

28PhidgetEncoder

PhidgetEncoder
Class documentation for PhidgetEncoder. This class contains all calls specific to the Phidget Encoder.
See your device’s User Guide for more specific API details, technical information, and revision
details. The User Guide, along with other resources, can be found on the product page for your
device.

Properties

EncoderCount
Gets the number of encoder inputs supported by this board.

EncoderCount as Long [get]

Position
Gets / Sets the current position of an encoder.

Position(

	 Index as long

) as Long [get,set]

Parameters:

Index
The encoder index.

IndexPosition
Gets the position of the last index pulse. Not supported by all encoders.

IndexPosition(

	 Index as long

) as Long [get]

Parameters:

Index
The encoder index.

Enabled
Gets / Sets the enabled state (power) of an encoder. Not supported by all PhidgetEncoders.

Enabled(

	 Index as Long

) as Boolean [get,set]

Parameters:

Index
The encoder index.

29PhidgetEncoder

InputCount
Gets the number of digital inputs supported by this board.

InputCount as Long [get]

InputState
Gets the state of a digital input.

InputState(

	 Index as Long

) as Boolean [get]

Parameters:

Index
The digital input index.

30PhidgetEncoder

Events

OnInputChange
Fired when a digital input changes.

event OnInputChange(

	 Index as Long,

	 NewState as Boolean

)

Parameters:

Index
The digital input index.

NewState
The state of the input

OnPositionChange
Fired when an encoder position changed.

event OnPositionChange(

	 Index as Long,

	 Time as Long,

	 EncoderDisplacement as Long

)

Parameters:

Index
The encoder index

Time
The time since the last position change event.

EncoderDisplacement
The amount the position changed since the last position change event.

31PhidgetFrequencyCounter

PhidgetFrequencyCounter
Class documentation for PhidgetFrequencyCounter. This class contains all calls specific to the
Phidget Frequency Counter. See your device’s User Guide for more specific API details, technical
information, and revision details. The User Guide, along with other resources, can be found on the
product page for your device.

Structures

PhidgetCOM_FrequencyCounterFilterType
Used for the Filter property. These are the predefined filter types supported by the Phidget
Frequency Counter.

enum PhidgetCOM_FrequencyCounterFilterType {

	 PHIDGETCOM_FREQUENCYCOUNTER_FILTERTYPE_ZERO_CROSSING = 1,

	 PHIDGETCOM_FREQUENCYCOUNTER_FILTERTYPE_LOGIC_LEVEL,

	 PHIDGETCOM_FREQUENCYCOUNTER_FILTERTYPE_UNKNOWN

}

Functions

Reset
Resets the TotalCount and TotalTime counters to 0 for the specified channel. For best performance,
this should be called when the channel is disabled.

Reset(

	 Index as Long,

}

Parameters:

Index
The channel index.

Properties

FrequencyInputCount
Gets the number of channels supported by the PhidgetFrequencyCounter.

FrequencyInputCount as Long [get]

Frequency
Gets the last calculated frequency on the specified channel, in Hz. Returns 0 if the timeout value
elapses without detecting a signal.

Frequency(

	 Index as long

32PhidgetFrequencyCounter

) as Double [get]

Parameters:

Index
The channel index.

TotalCount
Gets the total number of pulses detected on the specified channel since the Phidget was opened, or
since the last reset.

TotalCount(

	 Index as long

) as Long [get]

Parameters:

Index
The channel index.

TotalTime
Gets the total elapses time since Phidget was opened, or since the last reset, in microseconds. This
time corresponds to the TotalCount property.

TotalTime(

	 Index as long

) as Long [get]

Parameters:

Index
The channel index.

Timeout
Gets / Sets the timeout value of the specified channel, in microseconds. This value is used to set
the time to wait without detecting a signal before reporting 0 Hz. The valid range is 0.1 - 100
seconds(100,000 - 100,000,000 microseconds).

Timeout(

	 Index as long

) as Long [get,set]

Parameters:

Index
The channel index.

Enabled
Gets / Sets the enabled state (power) of a specified channel. When the channel is disabled, it will
no longer register counts. TotalTime and TotalCount properties will not be incremented until the
channel is re-enabled.

33PhidgetFrequencyCounter

Enabled(

	 Index as Long

) as Boolean [get,set]

Parameters:

Index
The channel index.

Filter
Gets / Sets the channel filter mode of a specified channel.

Filter(

	 Index as Long

) as PhidgetCOM_FrequencyCounterFilterType [get,set]

Parameters:

Index
The channel index.

Events

OnCount
Fired whenever some counts have been detected. This event will fire at up to 31.25 times a second,
depending on the pulse rate. The time is in microseconds and represents the amount of time in
which the number of counts occured. This event will fire with a count of 0 once, after the Timeout
time has elapsed with no counts for a channel, to indicate 0 Hz the specified DataRate, for each
enabled bridge. Value is the BridgeValue, in mV/V.

event OnCount(

	 Index as Long,

	 Time as Long,

	 Counts as Long

)

Parameters:

Index
The channel index.

Time
The amount of time in which the number of counts occured, in microseconds.

Counts
The number of pulses detected on the specified channel since the last event.

34PhidgetGPS

PhidgetGPS
Class documentation for PhidgetGPS. This class contains all calls specific to the Phidget GPS. See
your device’s User Guide for more specific API details, technical information, and revision details.
The User Guide, along with other resources, can be found on the product page for your device.

Due to the nature of COM, executables may only work on the computer it is built on.

Structures

PhidgetGPS_Date
Used for the Date property. This structure represents the current GPS time.

struct PhidgetGPS_Date {

	 short tm_mday;

	 short tm_mon;

	 short tm_year;

}

PhidgetGPS_Time
Used for the Time property. This structure represents the current GPS date.

struct PhidgetGPS_Time {

	 short tm_ms;

	 short tm_sec;

	 short tm_min;

	 short tm_hour;

}

Properties

Latitude
Gets the current latitude, in signed degrees format.

Latitude as Double [get]

Longitude
Gets the current longitude, in signed degrees format.

Longitude as Double [get]

Altitude
Gets the current altitude, in meters.

Altitude as Double [get]

35PhidgetGPS

Heading
Gets the current heading, in degrees - in compass bearing format. Heading is only accurate if
the GPS is moving, and it represents a heading over time, and not the actual direction of the
PhidgetGPS is pointing.

Heading as Double [get]

Velocity
Gets the current velocity, in km/h. Velocity is only accurate if the PhidgetGPS is moving.

Velocity as Double [get]

Date
Gets the current GPS date.

Date as PhidgetGPS_Date [get]

Time
Gets the current GPS time. The time is updated 10 times a second and is accurate to within at least
500ms when PositionFixStatus is true.

Time as PhidgetGPS_Time [get]

PositionFixStatus
Gets the current position fix status. If true, all of the above properties will be available. Time
and Date may or may not be available, but they can only be trusted as accurate when the
PositionFixStatus is true.

PositionFixStatus as Boolean [get]

Events

OnPositionChange
Fired whenever the position changes.

event OnPositionChange(

	 Latitude as Double,

	 Longitude as Double,

	 Altitude as Double

)

Parameters:

Latitude
The current latitude, in signed degrees format.

36PhidgetGPS

Longitude
The current longitude, in signed degrees format.

Altitude
The current altitude, in meters.

OnPositionFixStatusChange
Fired whenever the position changes.

event OnPositionFixStatusChange(

	 fixStatus as Boolean

)

Parameters:

fixStatus
The current position fix status.

37PhidgetInterfaceKit

PhidgetInterfaceKit
Class documentation for PhidgetInterfaceKit. This class contains all calls specific to the Phidget
Interface Kit. See your device’s User Guide for more specific API details, technical information, and
revision details. The User Guide, along with other resources, can be found on the product page for
your device.

Properties

InputCount
Gets the number of digital inputs supported by this board.

InputCount as Long [get]

InputState
Gets the state of a digital input.

InputState(

	 Index as Long

) as Boolean [get]

Parameters:

Index
The digital input index.

OutputCount
Gets the number of digital outputs supported by this board.

OutputCount as Long [get]

OutputState
Gets / Sets the state of a digital output.

OutputState(

	 Index as Long

) as Boolean [get,set]

Parameters:

Index
The digital output index.

SensorCount
Gets the number of sensors (analog inputs) supported by this board.

SensorCount as Long [get]

38PhidgetInterfaceKit

SensorValue
Gets the value of a sensor (0-1000).

SensorValue(

	 Index as Long

) as Long [get]

Parameters:

Index
The sensor index.

SensorRawValue
Gets the raw value of a sensor (12-bit).

SensorRawValue(

	 Index as Long

) as Long [get]

Parameters:

Index
The sensor index.

SensorChangeTrigger
Gets / Sets the change trigger for a sensor.

SensorChangeTrigger(

	 Index as Long

) as Long [get,set]

Parameters:

Index
The sensor index.

Ratiometric
Gets / Sets the ratiometric state of the board.

Ratiometric as Boolean [get,set]

39PhidgetInterfaceKit

DataRate
Gets / Sets the data rate for a sensor, in milliseconds. See user guide for supported data rates.

DataRate(

	 Index as Long

) as Long [get,set]

Parameters:

Index
The sensor index.

DataRateMin
Gets the minimum data rate for a sensor, in milliseconds.

DataRateMin(

	 Index as Long

) as Long [get]

Parameters:

Index
The sensor index.

DataRateMax
Gets the maximum data rate for a sensor, in milliseconds.

DataRateMax(

	 Index as Long

) as Long [get]

Parameters:

Index
The sensor index.

40PhidgetInterfaceKit

Events

OnInputChange
Fired when a digital input changes.

event OnInputChange(

	 Index as Long,

	 NewState as Boolean

)

Parameters:

Index
The digital inputs index.

NewState
The digital input state.

OnOutputChange
Fired when a digital output changes.

event OnOutputChange(

	 Index as Long,

	 NewState as Boolean

)

Parameters:

Index
The digital output index.

NewState
The digital output state.

OnSensorChange
Fired when a sensor value changes by more then the change trigger.

event OnSensorChange(

	 Index as long,

	 SensorValue as long

)

Parameters:

Index
The sensor index.

SensorValue
The sensor value.

41PhidgetIR

PhidgetIR
Class documentation for PhidgetIR. This class contains all calls specific to the Phidget IR. See your
device’s User Guide for more specific API details, technical information, and revision details. The
User Guide, along with other resources, can be found on the product page for your device.

Due to the nature of COM, executables may only work on the computer it is built on.

Structures

PhidgetIR_CodeInfo
Used for the Transmit function and the OnLearn event. This structure represents all parameters
needed to send an IR code.

struct PhidgetIR_CodeInfo

{

	 long bitCount;

	 long encoding;

	 long length;

	 long gap;

	 long trail;

	 long header[2];

	 long one[2];

	 long zero[2];

	 long repeat[26];

	 long min_repeat;

	 byte toggle_mask[16];

	 long carrierFrequency;

	 long dutyCycle;

}

PhidgetIR_Encoding
Used for the encoding field of the PhidgetIR_CodeInfo structure. These are the predefined
encodings supported by a Phidget IR.

enum PhidgetIR_Encoding {

	 PHIDGETCOM_IR_ENCODING_UNKNOWN = 1,

	 PHIDGETCOM_IR_ENCODING_SPACE,

	 PHIDGETCOM_IR_ENCODING_PULSE,

	 PHIDGETCOM_IR_ENCODING_BIPHASE,

	 PHIDGETCOM_IR_ENCODING_RC5,

	 PHIDGETCOM_IR_ENCODING_RC6

42PhidgetIR

}

PhidgetIR_Length
Used for the length field of the PhidgetIR_CodeInfo structure. These are the predefined
length styles supported by a Phidget IR.

enum PhidgetIR_Length {

	 PHIDGETCOM_IR_LENGTH_UNKNOWN = 1,	

	 PHIDGETCOM_IR_LENGTH_CONSTANT,		

	 PHIDGETCOM_IR_LENGTH_VARIABLE

}

Functions

Transmit
Transmits a code.

Transmit(

	 data() as Byte,

	 codeInfo as PhidgetIR_CodeInfo

)

Parameters:

data
An array of code data, right justified.

codeInfo
Code parameters.

TransmitRepeat
Transmits a repeat code. Must quickly follow a transmit call.

TransmitRepeat()

TransmitRaw
Transmits a set of raw data.

TransmitRaw(

	 data() as Long,

	 length as Long,

	 carrierFrequency as Long,

	 dutyCycle as Long,

43PhidgetIR

	 gap as Long

)

Parameters:

data
An array of raw data in microseconds. Must start and end with a pulse.

length
Size of the data array, or amount of data to send.

carrierFrequency
Carrier frequency in kHz.

dutyCycle
Duty cycle in percent.

gap
Gap length in microseconds.

getLastCode
Gets the last recieved code

getLastCode(

	 data() as Byte,

	 dataLength as Long,

	 bitCount as Long

)

Parameters:

data
An array to store the code data.

dataLength
Length of the data array, set to the length of code data.

bitCount
Set to the bit count.

getLastLearnedCode
Gets the last recieved code

getLastLearnedCode(

	 data() as Byte,

	 dataLength as Long,

44PhidgetIR

	 codeInfo as PhidgetIR_CodeInfo

)

Parameters:

data
An array to store the code data.

dataLength
Length of the data array, set to the length of code data.

codeInfo
Set to the parameters for this code.

getRawData
Reads in raw data.

getRawData(

	 data() as Long,

	 dataLength as Long

)

Parameters:

data
An array to store the raw data.

dataLength
Length of the data array, set to the amount of raw data read.

Events

OnCode
Fired when an IR code is received.

event OnCode(

	 data() as Byte,

	 dataLength as Long,

	 bitCount as Long,

	 repeat as Boolean

)

Parameters:

data
The code data.

dataLength
Size of the data array

bitCount
Number of bits in the code

repeat

45PhidgetIR

Whether the code is a repeat (button held down).

OnLearnedCode
Fired when an IR code is learned.

event OnLearnedCode(

	 data() as Byte,

	 dataLength as Long,

	 codeInfo as PhidgetIR_CodeInfo

)

Parameters:

data
The code data.

dataLength
Size of the data array

codeInfo
Code parameters.

OnRawData
Fired when an IR code is received.

event OnRawData(

	 data() as Long,

	 dataLength as Long

)

Parameters:

data
The raw data, in microseconds.

dataLength
Size of the data array

46PhidgetLED

PhidgetLED
Class documentation for PhidgetLED. This class contains all calls specific to the Phidget LED. See
your device’s User Guide for more specific API details, technical information, and revision details.
The User Guide, along with other resources, can be found on the product page for your device.

Structures

PhidgetCOM_LEDCurrentLimit
Used for the CurrentLimit property. These are the predefined current limits supported by a
Phidget LED 64 Advanced.

enum PhidgetCOM_LEDCurrentLimit {

	 PHIDGETCOM_LED_CURRENT_LIMIT_20mA = 1,

	 PHIDGETCOM_LED_CURRENT_LIMIT_40mA,

	 PHIDGETCOM_LED_CURRENT_LIMIT_60mA,

	 PHIDGETCOM_LED_CURRENT_LIMIT_80mA

}

PhidgetCOM_LEDVoltage
Used for the Voltage property. These are the predefined voltages supported by a Phidget LED 64
Advanced.

enum PhidgetCOM_LEDVoltage {

	 PHIDGETCOM_LED_VOLTAGE_1_7V = 1,

	 PHIDGETCOM_LED_VOLTAGE_2_75V,

	 PHIDGETCOM_LED_VOLTAGE_3_9V,

	 PHIDGETCOM_LED_VOLTAGE_5_0V

}

Properties

LEDCount
Gets the number of LEDs supported by this controller.

LEDCount as Long [get]

Brightness
Gets / Sets the brightness of an LED (0-100).

DiscreteLED(

	 Index as Long

) as Double [get,set]

Parameters:

Index
The LED index.

47PhidgetLED

CurrentLimitIndexed
Gets / Sets the current limit of an LED (0-100). Supported on 1032 only.

CurrentLimitIndexed(

	 Index as Long

) as Double [get,set]

Parameters:

Index
The LED index.

CurrentLimit
Gets / Sets the current limit for all LEDs. Supported on 1031 only.

CurrentLimit as PhidgetCOM_LEDCurrentLimit [get,set]

Note that settable current limit is not supported by all PhidgetLEDs.

Voltage
Gets / Sets the voltage for all LEDs.

Voltage as PhidgetCOM_LEDVoltage [get,set]

Note that settable voltage is not supported by all PhidgetLEDs.

48PhidgetMotorControl

PhidgetMotorControl
Class documentation for PhidgetMotorControl. This class contains all calls specific to the Phidget
Motor Control. See your device’s User Guide for more specific API details, technical information, and
revision details. The User Guide, along with other resources, can be found on the product page for
your device.

Properties

InputCount
Gets the number of digital inputs supported by this controller.

InputCount as Long [get]

InputState
Gets the state of a digital input.

InputState(

	 Index as Long

) as Boolean [get]

Parameters:

Index
The digital input index.

EncoderCount
Gets the number of encoders supported by the PhidgetMotorControl. Not supported by all
PhidgetMotorControls.

EncoderCount as Long [get]

EncoderPosition
Gets / Sets the position of an encoder. The position starts at 0 every time the PhidgetMotorControl
is opened. Not supported by all PhidgetMotorControls.

EncoderPosition(

	 Index as Long

) as Long [get,set]

Parameters:

Index

49PhidgetMotorControl

The encoder index.

SensorCount
Gets the number of sensors(Analog Inputs) supported by the PhidgetMotorControl. Not supported
by all PhidgetMotorControls.

SensorCount as Long [get]

SensorValue
Gets the sensor value of a particular Analog Input. SensorValue varies between 0-1000. If you are
using an Analog Sensor from Phidgets Inc., its User Guide will specify the formula used to convert
SensorValue into the measured property. Not supported by all PhidgetMotorControls.

SensorValue(

	 Index as Long

) as Long [get]

Parameters:

Index
The sensor index.

SensorRawValue
Gets the raw value of a analog input. Not supported by all PhidgetMotorControls.

SensorRawValue(

	 Index as Long

) as Long [get]

Parameters:

Index
The sensor index.

Ratiometric
Gets / Sets the ratiometric state. This controls the voltage reference used for sampling the analog
sensors. Not supported by all PhidgetMotorControls

Ratiometric as Boolean [get,set]

BackEMFSensingState
Gets / Sets the Back EMF Sensing State for the specified motor. Not supported by all
PhidgetMotorControls.

BackEMFSensingState(

	 Index as Long

50PhidgetMotorControl

) as Boolean [get,set]

Parameters:

Index
The motor index.

BackEMF
Gets the Back EMF voltage for a specified motor. Not supported by all PhidgetMotorControls.

BackEMF(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

MotorCount
Gets the number of motors supported by this controller.

MotorCount as Long [get]

Acceleration
Gets / Sets the acceleration for a motor.

Acceleration(

	 Index as Long

) as Double [get,set]

Parameters:

Index
The motor index.

AccelerationMax
Gets the maximum acceleration supported by a motor.

AccelerationMax(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

AccelerationMin

51PhidgetMotorControl

Gets the minimum acceleration supported by a motor.

AccelerationMin(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

Current
Gets the current current draw of a motor.

Current(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

SupplyVoltage
Gets the supply voltage for the motors. This could be higher than the actual supply voltage. Not
supported by all PhidgetMotorControls.

SupplyVoltage as Double [get]

Velocity
Gets / Sets the current velocity of a motor.

Velocity(

	 Index as Long

) as Double [get,set]

Parameters:

Index
The motor index.

Braking
Gets / Sets the braking value for a specified motor. This is applied when the velocity is 0. Default is
0%. Not supported by all PhidgetMotorControls.

Braking(

	 Index as Long

) as Double [get,set]

Parameters:

52PhidgetMotorControl

Index
The motor index.

Events

OnInputChange
Fired when a digital input changes.

event OnInputChange(

	 Index as Long,

	 NewState as Boolean

)

Parameters:

Index
The digital input index.

NewState
The state of the input.

OnVelocityChange
Fired when the velocity of a motor changes.

event OnVelocityChange(

	 Index as Long,

	 Velocity as Double

)

Parameters:

Index
The motor index.

Velocity
The current velocity.

OnEncoderPositionChange
Fired when the encoder position changes. Not supported by all PhidgetMotorControls.

event OnEncoderPositionChange(

	 Index as Long,

	 Time as Long,

	 PositionChange as Long

)

Parameters:

Index

53PhidgetMotorControl

The encoder index.

Time
The time since the last position change event.

PositionChange
The amount the position change since the last position change event.

OnEncoderPositionUpdate
Fired at a constant rate(every 8ms), regardless of whether the encoder position changed or not. Not
supported by all PhidgetMotorControls.

event OnEncoderPositionUpdate(

	 Index as Long,

	 PositionChange as Long

)

Parameters:

Index
The encoder index.

PositionChange
The amount the position change since the last position update event.

OnBackEMFUpdate
Fired at a constant rate(every 16ms) when BackEMFSensingState is enabled for the specified
motor. Not supported by all PhidgetMotorControls.

event OnBackEMFUpdate(

	 Index as Long,

	 Voltage as Double

)

Parameters:

Index
The motor index.

Voltage
The Back EMF voltage for a motor.

OnSensorUpdate
Fired at a constant rate(every 8ms). Not supported by all PhidgetMotorControls.

event OnSensorUpdate(

	 Index as Long,

	 SensorValue as Long

)

Parameters:

54PhidgetMotorControl

Index
The sensor index.

SensorValue
The sensor value of a particular Analog Input.

OnCurrentChange
Fired whenever the current draw changes. Not supported by all PhidgetMotorControls.

event OnCurrentChange(

	 Index as Long,

	 Current as Double

)

Parameters:

Index
The motor index.

Current
The current draw for a motor.

OnCurrentUpdate
Fired at a constant rate(8ms). Not supported by all PhidgetMotorControls.

event OnCurrentUpdate(

	 Index as Long,

	 Current as Double

)

Parameters:

Index
The motor index.

Current
The current draw for a motor.

55PhidgetPHSensor

PhidgetPHSensor
Class documentation for PhidgetPHSensor. This class contains all calls specific to the Phidget PH
Sensor. See your device’s User Guide for more specific API details, technical information, and
revision details. The User Guide, along with other resources, can be found on the product page for
your device.

Properties

PH
Gets the currently sensed PH.

PH as Double [get]

PHMax
Gets the maximum PH that could be sensed.

PHMax as Double [get]

PHMin
Gets the minimum PH that could be sensed.

PHMin as Double [get]

PHChangeTrigger
Gets / Sets the PH change trigger.

PHChangeTrigger as Double [get,set]

Potential
Gets the currently sensed potential.

Potential as Double [get]

PotentialMax
Gets the maximum potential that the board can sense.

PotentialMax as Double [get]

PotentialMin
Gets the minimum potential that the board can sense.

PotentialMin as Double [get]

56PhidgetPHSensor

Temperature
Sets the temperature value used for the PH calculation. Default is 20 degrees Celsius.

Temperature as Double [set]

Events

OnPHChange
Fired when the PH changes by more then the change trigger.

event OnPHChange(

	 PH as Double

)

Parameters:

PH
The PH.

57PhidgetRFID

PhidgetRFID
Class documentation for PhidgetRFID. This class contains all calls specific to the Phidget RFID. See
your device’s User Guide for more specific API details, technical information, and revision details.
The User Guide, along with other resources, can be found on the product page for your device.

Structures

PhidgetCOM_RFIDProtocol
Used for the LastTagProtocol property and write function. These are the protocols supported
by the various RFID readers / writers.

enum PhidgetCOM_RFIDProtocol {

	 PHIDGETCOM_RFID_PROTOCOL_EM4100 = 1,

	 PHIDGETCOM_RFID_PROTOCOL_ISO11785_FDX_B,

	 PHIDGETCOM_RFID_PROTOCOL_PHIDGETS

}

Functions

Write
Write data to a tag.

Write(

	 TagString as String,

	 Protocol as PhidgetCOM_RFIDProtocol,

	 Lock as Boolean

);

Parameters:

TagString
The tag string to program. See product manual for string formatting details.

Protocol
The protocol to use.

Lock
Locks the tag from being written again.

Properties

OutputCount
Gets the number of digital outputs supported by this board.

OutputCount as Long [get]

58PhidgetRFID

OutputState
Gets / Sets the state of a digital output.

OutputState(

	 Index as Long

) as Boolean [get,set]

Parameters:

Index
The digital output index.

AntennaOn
Gets / Sets the state of the antenna. Note that antenna must be enabled before tags will be read.

AntennaOn as Boolean [get,set]

LEDOn
Gets / Sets the state of the onboard LED.

LEDOn as Boolean [get,set]

TagStatus
Gets the tag status. This is true if there is a tag on the reader.

TagStatus as Boolean [get]

LastTag
Gets the last tag that was read. This tag may or may not still be on the reader.

LastTag as String [get]

LastTagProtocol
Gets the protocol of the last tag that was read. This tag may or may not still be on the reader.

LastTagProtocol as PhidgetCOM_RFIDProtocol [get]

59PhidgetRFID

Events

OnOutputChange
Fired when a digital output changes.

event OnOutputChange(

	 Index as Long,

	 NewState as Boolean

)

Parameters:

Index
The digital output index.

NewState
The digital output state.

OnTag
Fired when a tag is detected.

event OnTag(

	 TagNumber as String

)

Parameters:

TagNumber
The detected tag.

OnTagLost
Fired when a tag is is taken off the reader.

event OnTagLost(

	 TagNumber as String

)

Parameters:

TagNumber
The lost tag.

60PhidgetServo

PhidgetServo
Class documentation for PhidgetServo. This class contains all calls specific to the Phidget Servo. See
your device’s User Guide for more specific API details, technical information, and revision details.
The User Guide, along with other resources, can be found on the product page for your device.

Structures

PhidgetCOM_ServoType
Used for the ServoType property. These are the predefined servo types supported by Phidgets Inc.
This list may be incomplete.

enum PhidgetCOM_ServoType {

	 PHIDGETCOM_SERVO_DEFAULT = 1,

	 PHIDGETCOM_SERVO_RAW_us_MODE,

	 PHIDGETCOM_SERVO_HITEC_HS322HD,

	 PHIDGETCOM_SERVO_HITEC_HS5245MG,

	 PHIDGETCOM_SERVO_HITEC_805BB,

	 PHIDGETCOM_SERVO_HITEC_HS422,

	 PHIDGETCOM_SERVO_TOWERPRO_MG90,

	 ...,

	 PHIDGETCOM_SERVO_USER_DEFINED

}

Functions

setServoParameters
Sets parameters for a custom servo type. This includes PCM range and degrees of rotation. This
affect min and max position, and the PCM to degree mapping formulas.

setServoParameters(

	 Index as Long,

	 MinUs as double,

	 MaxUs as double,

	 Degrees as double

};

Parameters:

Index
The motor index.

MinUs
The minimum PCM supported by the motor, in microseconds.

MaxUs
The maximum PCM supported by the motor, in microseconds.

Degrees
Real degrees of rotation represented by the given PCM range

61PhidgetServo

Properties

MotorCount
Gets the number of motors supported by this controller.

MotorCount as Long [get]

Position
Gets / Sets the current / target position of a motor.

Position(

	 Index as Long

) as Double [get,set]

Parameters:

Index
The motor index.

PositionMax
Gets the maximum position supported by a motor.

PositionMax(

	 Index and Long

) as Double [get]

Parameters:

Index
The motor index.

PositionMin
Gets the minimum position supported by a motor.

PositionMin(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

62PhidgetServo

Engaged
Gets / Sets the engaged state of a motor. This is whether a motor is powered or not.

Engaged(

	 Index as Long

) as Boolean [get,set]

Parameters:

Index
The motor index.

ServoType
Gets / Sets the servo type for an index. There are several predefined servo types. All other types of
servos can be set up using the setServoParameters function.

ServoType(

	 Index as Long

) as PhidgetCOM_ServoType [get,set]

Parameters:

Index
The motor index.

Events

OnPositionChange
Fired when the position of a motor changes.

event OnPositionChange(

	 Index as Long,

	 Position as Double

)

Parameters:

Index
The motor index.

Position
The motor position.

63PhidgetSpatial

PhidgetSpatial
Class documentation for PhidgetSpatial. This class contains all calls specific to the Phidget Spatial.
See your device’s User Guide for more specific API details, technical information, and revision
details. The User Guide, along with other resources, can be found on the product page for your
device.

Structures

PhidgetSpatial_SpatialEventData
Used for the OnSpatialData event. This structure represents all the state of a PhidgetSpatial at a
moment in time.

struct PhidgetSpatial_SpatialEventData

{

	 double acceleration[3];

	 double angularRate[3];

	 double magneticField[3];

	 long time_seconds;

	 long time_microseconds;

}

Properties

AccelerationAxisCount
Gets the number of acceleration axes supported by this board.

AccelerationAxisCount as Long [get]

Acceleration
Gets the current acceleration of a axis.

Acceleration(

	 Index as Long

) as Double [get]

Parameters:

Index
The acceleration axis.

64PhidgetSpatial

AccelerationMax
Gets the maximum acceleration that can be measured by as axis.

AccelerationMax(

	 Index as Long

) as Double [get]

Parameters:

Index
The acceleration axis.

AccelerationMin
Gets the minimum acceleration that can be measured by an axis.

AccelerationMin(

	 Index as Long

) as Double [get]

Parameters:

Index
The acceleration axis.

GyroAxisCount
Gets the number of gyroscope axes supported by this board.

GyroAxisCount as Long [get]

AngularRate
Gets the current angular rate of a axis.

AngularRate(

	 Index as Long

) as Double [get]

Parameters:

Index
The gyro axis.

65PhidgetSpatial

AngularRateMax
Gets the maximum angular rate that can be measured by as axis.

AngularRateMax(

	 Index as Long

) as Double [get]

Parameters:

Index
The gyro axis.

AngularRateMin
Gets the minimum angular rate that can be measured by an axis.

AngularRateMin(

	 Index as Long

) as Double [get]

Parameters:

Index
The gyro axis.

CompassAxisCount
Gets the number of compass axes supported by this board.

CompassAxisCount as Long [get]

MagneticField
Gets the current magnetic field of a axis.

MagneticField(

	 Index as Long

) as Double [get]

Parameters:

Index
The compass axis.

66PhidgetSpatial

MagneticFieldMax
Gets the maximum magnetic field that can be measured by as axis.

MagneticFieldMax(

	 Index as Long

) as Double [get]

Parameters:

Index
The compass axis.

MagneticFieldMin
Gets the minimum magnetic field that can be measured by an axis.

MagneticFieldMin(

	 Index as Long

) as Double [get]

Parameters:

Index
The compass axis.

DataRate
Gets / Sets the data rate, in milliseconds. See the user guide for supported data rates.

DataRate as Long [get,set]

DataRateMin
Gets the minimum data rate, in milliseconds.

DataRateMin as Long [get]

DataRateMax
Gets the maximum data rate , in milliseconds.

DataRateMax as Long [get]

67PhidgetSpatial

CompassCorrectionParameters
Sets the compass correction parameters. This is for filtering out any compass errors including hard
and soft iron offsets.

CompassCorrectionParameters(

	 magField as Double,

	 offset0 as Double,

	 offset1 as Double,

	 offset2 as Double,

	 gain0 as Double,

	 gain1 as Double,

	 gain2 as Double,

	 T0 as Double,

	 T1 as Double,

	 T2 as Double,

	 T3 as Double,

	 T4 as Double,

	 T5 as Double

) [set]

Parameters:

magField
Ambient magnetic field.

offset0, osffest1, offset2
Offset corrections.

gain0, gain1, gain2
Gain corrections

T0 - T5
Non-orthogonality corrections.

Functions

zeroGyro
Zeroes the gyro. Should only be called when the board in still.

zeroGyro();

resetCompassCorrectionParameters
Resets compass correction parameters.

resetCompassCorrectionParameters();

68PhidgetSpatial

Events

OnSpatialData
Fired at DataRate.

event OnSpatialData(

	 data() as PhidgetSpatial_SpatialEventData,

	 dataCount as Long

)

Parameters:

data
An array of sets of spatial data.

dataCount
The number of spatial data sets in this event.

69PhidgetStepper

PhidgetStepper
Class documentation for PhidgetStepper. This class contains all calls specific to the Phidget Stepper.
See your device’s User Guide for more specific API details, technical information, and revision
details. The User Guide, along with other resources, can be found on the product page for your
device.

Properties

InputCount
Gets the number of digital inputs supported by this board.

InputCount as Long [get]

InputState
Gets the state of a digital input.

InputState(

	 Index as Long

) as Boolean [get]

Parameters:

Index
The digital input index.

MotorCount
Gets the number of motors supported by this controller.

MotorCount as Long [get]

Acceleration
Gets / Sets the acceleration for a motor.

Acceleration(

	 Index as Long

) as Double [get,set]

Parameters:

Index
The motor index.

70PhidgetStepper

AccelerationMax
Gets the maximum acceleration supported by a motor.

AccelerationMax(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

AccelerationMin
Gets the minimum acceleration supported by a motor.

AccelerationMin(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

Current
Gets the current current draw of a motor.

Current(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

CurrentLimit
Gets / Sets the current limit for a motor.

CurrentLimit(

	 Index as Long

) as Double [get,set]

Parameters:

Index
The motor index.

71PhidgetStepper

CurrentMax
Gets the maximum current limit supported by a motor.

CurrentMax(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

CurrentMin
Gets the minimum current limit supported by a motor.

CurrentMin(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

CurrentPosition
Gets / Sets the current position of a motor.

CurrentPosition(

	 Index as Long

) as Long [get,set]

Parameters:

Index
The motor index.

TargetPosition
Gets / Sets the target position of a motor.

TargetPosition(

	 Index as Long

) as Long [get,set]

Parameters:

Index
The motor index.

72PhidgetStepper

PositionMax
Gets the maximum position supported by a motor.

PositionMax(

	 Index and Long

) as Long [get]

Parameters:

Index
The motor index.

PositionMin
Gets the minimum position supported by a motor.

PositionMin(

	 Index as Long

) as Long [get]

Parameters:

Index
The motor index.

Velocity
Gets the current velocity of a motor.

Velocity(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

VelocityLimit
Gets / Set the velocity limit of a motor.

VelocityLimit(

	 Index as Long

) as Double [get,set]

Parameters:

Index
The motor index.

73PhidgetStepper

VelocityMax
Gets the maximum velocity limit supported by a motor.

VelocityMax(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

VelocityMin
Gets the minimum velocity limit supported by a motor.

VelocityMin(

	 Index as Long

) as Double [get]

Parameters:

Index
The motor index.

Engaged
Gets / Sets the engaged state of a motor. This is whether a motor is powered or not.

Engaged(

	 Index as Long

) as Boolean [get,set]

Parameters:

Index
The motor index.

Stopped
Gets the stopped state of a motor. If this is true, the motor is not moving and there are no
outstanding commands.

Stopped(

	 Index as Long

) as Boolean [get]

Parameters:

Index
The motor index.

74PhidgetStepper

Events

OnInputChange
Fired when a digital input changes.

event OnInputChange(

	 Index as Long,

	 NewState as Boolean

)

Parameters:

Index
The digital inputs index.

NewState
The digital input state.

OnCurrentChange
Fired when the current draw of a motor changes.

event OnCurrentChange(

	 Index as Long,

	 Current as Double

)

Parameters:

Index
The motor index.

Current
The current draw.

OnPositionChange
Fired when the position of a motor changes.

event OnPositionChange(

	 Index as Long,

	 Position as Long

)

Parameters:

Index
The motor index.

Position

75PhidgetStepper

The motor position.

OnVelocityChange
Fired when the velocity of a motor changes.

event OnVelocityChange(

	 Index as Long,

	 Velocity as Double

)

Parameters:

Index
The motor index.

Velocity
The current velocity.

76PhidgetTemperatureSensor

PhidgetTemperatureSensor
Class documentation for PhidgetTemperatureSensor. This class contains all calls specific to the
Phidget Temperature Sensor. See your device’s User Guide for more specific API details, technical
information, and revision details. The User Guide, along with other resources, can be found on the
product page for your device.

Properties

TemperatureInputCount
Gets the number of thermocouple inputs supported by this board.

TemperatureInputCount as Long [get]

Temperature
Gets the currently sensed temperature of a thermocouple input.

Temperature(

	 Index as Long

) as Double [get]

Parameters:

Index
The thermocouple input index.

TemperatureMax
Gets the maximum temperature that a thermocouple input can measure.

TemperatureMax(

	 Index as Long

) as Double [get]

Parameters:

Index
The thermocouple input index.

TemperatureMin
Gets the minimum temperature that a thermocouple input can measure.

TemperatureMin(

	 Index as Long

) as Double [get]

Parameters:

Index
The thermocouple input index.

77PhidgetTemperatureSensor

TemperatureChangeTrigger
Gets / Sets the change trigger for a thermocouple input.

TemperatureChangeTrigger(

	 Index as Long

) as Double [get,set]

Parameters:

Index
The thermocouple input index.

ThermocoupleType
Gets / Sets the type of thermocouple attached to a thermocouple input.

ThermocoupleType(

	 Index as Long

) as Long [get,set]

Parameters:

Index
The thermocouple input index.

Discussion:

There are 4 thermocouple types supported: K-Type=1, J-Type=2, E-Type=3 and T-Type=4.

Potential
Gets the currently measured potential at a thermocouple input.

Potential(

	 Index as Long

) as Double [get]

Parameters:

Index
The thermocouple input index.

PotentialMax
Gets the maximum potential that a thermocouple input can measure.

PotentialMax(

	 Index as long

) as Double [get]

Parameters:

Index
The thermocouple input index.

78PhidgetTemperatureSensor

PotentialMin
Gets the minimum potential that a thermocouple input can measure.

PotentilaMin(

	 Index as Long

) as Double [get]

Parameters:

Index
The thermocouple input index.

AmbientTemperature
Gets the ambient (board) temperature.

AmbientTemperature as Double [get]

AmbientTemperatureMax
Gets the maximum temperature that the ambient sensor can measure.

AmbientTemperatureMax as Double [get]

AmbientTemperatureMin
Gets the minimum temperature that the ambient sensor can measure.

AmbientTemperatureMin as Double [get]

Events

OnTemperatureChange
Fired when the temperature of a thermocouple changes by more then the change trigger.

event OnTemperatureChange(

	 Index as Long,

	 Temperature as Double

)

Parameters:

Index
The thermocouple input index.

Temperature
The temperature.

79PhidgetTextLCD

PhidgetTextLCD
Class documentation for PhidgetTextLCD. This class contains all calls specific to the Phidget Text
LCD. See your device’s User Guide for more specific API details, technical information, and revision
details. The User Guide, along with other resources, can be found on the product page for your
device.

Structures

PhidgetCOM_TextLCDScreenSize
Used for the ScreenSize property. These are the predefined screen sizes supported by
PhidgetTextLCD. Not supported by all PhidgetTextLCDs.

enum PhidgetCOM_TextLCDScreenSize {

	 PHIDGETCOM_TEXTLCD_SCREEN_NONE = 1,

	 PHIDGETCOM_TEXTLCD_SCREEN_1x8,

	 PHIDGETCOM_TEXTLCD_SCREEN_2x8,

	 PHIDGETCOM_TEXTLCD_SCREEN_2x16,

	 PHIDGETCOM_TEXTLCD_SCREEN_4x16,

	 PHIDGETCOM_TEXTLCD_SCREEN_2x20,

	 PHIDGETCOM_TEXTLCD_SCREEN_4x20,

	 PHIDGETCOM_TEXTLCD_SCREEN_2x24,

	 PHIDGETCOM_TEXTLCD_SCREEN_1x40,

	 PHIDGETCOM_TEXTLCD_SCREEN_2x40,

	 PHIDGETCOM_TEXTLCD_SCREEN_4x40,

	 PHIDGETCOM_TEXTLCD_SCREEN_UNKNOWN

}

Functions

CustomCharacter
Sets a custom character. See the TextLCD User Guide for more information.

CustomCharacter(

	 Index as Long,

	 Val1 as Long,

	 Val2 as Long

) [set]

Parameters:

Index
The custom character index (8-15)

Val1
The first half of the custom character

Val2
The second half of the custom character

80PhidgetTextLCD

DisplayString
Sets the string to display on a row.

DisplayString(

	 Index as Long

) [set]

Parameters:

Index
The row index.

DisplayCharacter
Sets the character to display at a specific row and column. Pass in as a one character string.

DisplayCharacter(

	 Row as Long,

	 Column as Long

) [set]

Parameters:

Row
The row index.

Column
The column index.

Initialize
Initializes the active TextLCD display. This runs an initialization routine which sets up and clears
the display. This can be used for activating a display that was plugged in after the TextLCD was
attached, to clear the display after setting/ getting the screen size, and to re-initialize a display if it
has become corrupted. Not supported by all PhidgetTextLCDs.

Initialize()

Properties

Screen
Gets / Sets the active screen. All other API calls depend on this being called first to select the screen
that subsequent calls affect. Not supported by all TextLCDs.

Screen as Long [get,set]

RowCount

81PhidgetTextLCD

Gets the number of display rows supported by this board.

RowCount as Long [get]

ColumnCount
Gets the number of columns per row supported by this board.

ColumnCount as Long [get]

ScreenCount
Gets the number of screens suppoted by the TextLCD. Not supported by all TextLCDs.

ScreenCount as Long [get]

ScreenSize
Gets / Sets the screen size for the active TextLCD display. The TextLCD Adapter supports a pre-
defiend set of screen sizes to choose from. By default, both screens are set to PHIDGETCOM_
TEXTLCD_SCREEN_NONE, and this function must always be called before trying to write text to a
display. Not supported by all TextLCDs.

ScreenSize as PhidgetCOM_TextLCDScreenSize [get,set]

Backlight
Gets / Sets the backlight state.

Backlight as Boolean [get,set]

Brightness
Gets / Sets the brightness of the backlight (0-255).

Note that only some TextLCDs support a settable backlight brightness.

Brightness as Long [get,set]

Contrast
Gets / Sets the contrast (0-255).

Constrast as Long [get,set]

CursorBlink
Gets / Sets the cursor blink state.

CursorBlink as Boolean [get,set]

82PhidgetTextLED

CursorOn
Gets / Sets the cursor on state.

CursorOn as Boolean [get,set]

PhidgetTextLED
Class documentation for PhidgetTextLED. This class contains all calls specific to the Phidget Text
LED. See your device’s User Guide for more specific API details, technical information, and revision
details. The User Guide, along with other resources, can be found on the product page for your
device.

Properties

RowCount
Gets the number of display rows supported by this board.

RowCount as Long [get]

ColumnCount
Gets the number of columns per row supported by this board

ColumnCount as Long [get]

Brightness
Gets / Sets the brightness.

Brightness as Long [get,set]

DisplayString
Sets the string to display on a row.

DisplayString(

	 Index as Long

) as String [set]

Parameters:

Index
The row index.

83PhidgetWeightSensor

PhidgetWeightSensor
Class documentation for PhidgetWeightSensor. This class contains all calls specific to the Phidget
Weight Sensor. See your device’s User Guide for more specific API details, technical information, and
revision details. The User Guide, along with other resources, can be found on the product page for
your device.

Properties

Weight
Gets the currently sensed weight.

Weight as Double [get]

WeightChangeTrigger
Gets / Sets the change trigger.

WeightChangeTrigger as Double [get,set]

Events

OnWeightChange
Fired when the weight changes by more then the change trigger.

event OnWeightChange(

	 Weight as Double

)

Parameters:

Weight
The weight.

84PhidgetManager

PhidgetManager
Class documentation for PhidgetManager. This class contains all calls specific to the Phidget
Manager. See the Phidget Manager page for more information.

Functions

Open
Opens a manager

Open();

OpenRemote
Opens a manager remotely using a server id.

OpenRemote(

	 ServerID as String [optional],

	 Password as String [optional]

);

Parameters:

ServerID
Server ID of the webservice to connect to. Not not specify to connect to any.

Password
Password of the webservice. Do not specify if the webservice does not have a password.

OpenRemoteIP
Opens a manager remotely using an address and port.

OpenRemoteIP(

	 IPAddress as String,

	 Port as Long,

	 Password as String [optional]

);

Parameters:

IPAddress
The address of the webservice to connect to.

Port
The port of the webservice to connect to.

Password
Password of the webservice. Do not specify if the webservice does not have a password.

http://www.phidgets.com/docs/Phidget_Manager

85PhidgetManager

Close
Closes a manager.

Close();

Properties

Count
Gets the number of attached phidgets. Use with the Device functions to enumerate connected
devices by index.

Count as Long [get]

DeviceType
Gets the device type of a Phidget.

DeviceType(

	 Index as Long

) as String [get]

Parameters:

Index
Index of an attached phidget.

DeviceVersion
Gets the firmware version of a Phidget.

DeviceVersion(

	 Index as Long

) as Long [get]

Parameters:

Index
Index of an attached phidget.

86PhidgetManager

DeviceName
Gets the long name of a Phidget.

DeviceName(

	 Index as Long

) as String [get]

Parameters:

Index
Index of an attached phidget.

DeviceSerial
Gets the unique serial number of a Phidget.

DeviceSerial(

	 Index as Long

) as Long [get]

Parameters:

Index
Index of an attached phidget.

DeviceLabel
Gets the Label of a Phidget.

DeviceLabel(

	 Index as Long

) as String [get]

Parameters:

Index
Index of an attached phidget.

IsAttachedToServer
Gets the attached to server state of a remotely opened manager.

IsAttachedToServer as Boolean [get]

Address
Gets the webservice address of a remotely opened manager.

Address as String [get]

87PhidgetManager

Port
Gets the webservice port number of a remotely opened manager.

Port as Long [get]

ServerID
Gets the webservice Server ID of a remotely opened manager.

ServerID as String [get]

88PhidgetManager

Events

OnAttach
Fired when a Phidget is plugged in.

event OnAttach(

	 deviceType as String,

	 deviceName as String,

	 serialNumber as Long,

	 deviceVersion as Long,

	 deviceLabel as String

)

Parameters:

deviceType
The device type.

deviceName
The device name.

serialNumber
The serial number.

deviceVersion
The device version.

deviceLabel
The device label.

OnDetach
Fired when a Phidget is unplugged.

event OnDetach(

	 deviceType as String,

	 deviceName as String,

	 serialNumber as Long,

	 deviceVersion as Long,

	 deviceLabel as String

)

89PhidgetManager

Parameters:

deviceType
The device type.

deviceName
The device name.

serialNumber
The serial number.

deviceVersion
The device version.

deviceLabel
The device label.

OnError
Fired on an asynchronous error. These are mostly network related.

event OnError(

	 Description as String,

	 SCODE as Long

)

Parameters:

Description
A description of the error.

SCODE
An error code corresponding to the error. See the General Phidget Programming page for a list of
error codes.

OnServerConnect
Fired when a connection to the webservice is made, when opening a manager remotely.

event OnServerConnect

OnServerDisconnect
Fired when a connection to the webservice is lost, when opening a manager remotely.

event OnServerDisconnect

90PhidgetDictionary

PhidgetDictionary
Class documentation for PhidgetDictionary. This class contains all calls specific to the Phidget
Dictionary. See your device’s User Guide for more specific API details, technical information, and
revision details. The User Guide, along with other resources, can be found on the product page for
your device.

Functions

OpenRemote
Opens a dictionary remotely using a server id.

OpenRemote(

	 ServerID as String [optional],

	 Password as String [optional]

);

Parameters:

ServerID
Server ID of the webservice to connect to. Not not specify to connect to any.

Password
Password of the webservice. Do not specify if the webservice does not have a password.

OpenRemoteIP
Opens a dictionary remotely using an address and port.

OpenRemote(

	 IPAddress as String,

	 Post as Long,

	 Password as String [optional]

);

Parameters:

IPAddress
The address of the webservice to connect to.

Port
The port of the webservice to connect to.

Password
Password of the webservice. Do not specify if the webservice does not have a password.

Close
Closes the connection to a dictionary.

Close();

91PhidgetDictionary

Add
Adds a key / value pair to the dictionary, or updates the value of an existing key.

Add(

	 Key as String,

	 Value as String,

	 Persistent as Boolean [optional]

);

Parameters:

Key
The key string to add. The key can only contain numbers, letters, “/”, “.”, “-”, “_”, and must begin
with a letter, “_” or “/”.

Value
The value string.

Persistent
Whether this key remains in the dictionary once this connection is closed. Default is True.

Remove
Removes a set of keys from the dictionary.

Remove(

	 Pattern as String

);

Parameters:

Pattern
A regular expression representing a set of keys to remove.

Get
Gets the value for a key.

Get(

	 Key as String

) as String;

Parameters:

Key
The key to get the value of.

Returns:

The value for the specified key. This will be an empty string if the key does not exist.

92PhidgetDictionary

Properties

IsAttachedToServer
Gets the attached to server state of a remotely opened manager.

IsAttachedToServer as Boolean [get]

Address
Gets the webservice address of a remotely opened manager.

Address as String [get]

Port
Gets the webservice port number of a remotely opened manager.

Port as Long [get]

ServerID
Gets the webservice Server ID of a remotely opened manager.

ServerID as String [get]

Events

OnError
Fired on an asynchronous error. These are mostly network related.

event OnError(

	 Description as String,

	 SCODE as Long

)

Parameters:

Description
A description of the error.

SCODE
An error code corresponding to the error. See the General Phidget Programming page for a list of

93PhidgetDictionary

error codes.

OnServerConnect
Fired when a connection to the webservice is made, when opening a manager remotely.

event OnServerConnect

OnServerDisconnect
Fired when a connection to the webservice is lost, when opening a manager remotely.

event OnServerDisconnect

94PhidgetKeyListener

PhidgetKeyListener
Class documentation for PhidgetKeyListener. This class enables the key listening abilities of the
Phidget Dictionary. See the Phidget Dictionary page for more information.

Functions

Start
Starts listening for key changes on a dictionary with a specific pattern. This must be called on a
connected dictionary, and is best called in the dictionary’s OnServerConnect event.

Start(

	 Dict as PhidgetDictionary,

	 Pattern as String

);

Parameters:

Dict
The dictionary to listen for keys on.

Pattern
The key pattern to listen for.

Stop
Stops listening for keys. This should be called in the dictionary’s OnServerDisconnect event.

Stop();

Properties

Pattern
Gets the key pattern that this listener is listening for.

Pattern as String [get]

http://www.phidgets.com/docs/Phidget_Dictionary

95PhidgetKeyListener

Events

OnKeyChange
Fired when a key is added or a value changes.

event OnKeyChange(

	 Key as String,

	 Value as String

)

Parameters:

Key
The key value.

Value
The value value.

OnKeyRemoval
Fired when a key is removed.

event OnKeyRemoval(

	 Key as String,

	 Value as String

)

Parameters:

Key
The key value.

Value
The value value.

	Introduction
	Overview
	How to use Phidgets
	Class Hierarchy

	Phidget
	Structures
	Functions
	Constants
	Properties
	Events

	PhidgetAccelerometer
	Properties
	Events

	PhidgetAdvancedServo
	Structures
	Functions
	Properties
	Events

	PhidgetAnalog
	Properties
	Events

	PhidgetBridge
	Structures
	Properties
	Events

	PhidgetEncoder
	Properties
	Events

	PhidgetFrequencyCounter
	Structures
	Functions
	Properties
	Events

	PhidgetGPS
	Structures
	Properties
	Events

	PhidgetInterfaceKit
	Properties
	Events

	PhidgetIR
	Structures
	Functions
	Events

	PhidgetLED
	Structures
	Properties

	PhidgetMotorControl
	Properties
	Events

	PhidgetPHSensor
	Properties
	Events

	PhidgetRFID
	Structures
	Functions
	Properties
	Events

	PhidgetServo
	Structures
	Functions
	Properties
	Events

	PhidgetSpatial
	Structures
	Properties
	Functions
	Events

	PhidgetStepper
	Properties
	Events

	PhidgetTemperatureSensor
	Properties
	Events

	PhidgetTextLCD
	Structures
	Functions
	Properties

	PhidgetTextLED
	Properties

	PhidgetWeightSensor
	Properties
	Events

	PhidgetManager
	Functions
	Properties
	Events

	PhidgetDictionary
	Functions
	Properties
	Events

	PhidgetKeyListener
	Functions
	Properties
	Events

